Properties

Label 5.5.176684.1-16.1-e2
Base field 5.5.176684.1
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.176684.1

Generator \(a\), with minimal polynomial \( x^{5} - 6 x^{3} - x^{2} + 5 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 5, -1, -6, 0, 1]))
 
gp: K = nfinit(Polrev([-1, 5, -1, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 5, -1, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{4}+a^{3}-11a^{2}-7a+6\right){x}{y}+\left(a^{4}+a^{3}-6a^{2}-5a+4\right){y}={x}^{3}+\left(-a^{4}+5a^{2}+2a-2\right){x}^{2}+\left(7a^{4}+6a^{3}-39a^{2}-40a+6\right){x}+97a^{4}+71a^{3}-531a^{2}-485a+132\)
sage: E = EllipticCurve([K([6,-7,-11,1,2]),K([-2,2,5,0,-1]),K([4,-5,-6,1,1]),K([6,-40,-39,6,7]),K([132,-485,-531,71,97])])
 
gp: E = ellinit([Polrev([6,-7,-11,1,2]),Polrev([-2,2,5,0,-1]),Polrev([4,-5,-6,1,1]),Polrev([6,-40,-39,6,7]),Polrev([132,-485,-531,71,97])], K);
 
magma: E := EllipticCurve([K![6,-7,-11,1,2],K![-2,2,5,0,-1],K![4,-5,-6,1,1],K![6,-40,-39,6,7],K![132,-485,-531,71,97]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^4-a^3+5a^2+4a-3)\) = \((-a^3+a^2+4a-2)\cdot(-a^4+5a^2+a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(2\cdot8\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^4-2a^3-6a^2+4a-6)\) = \((-a^3+a^2+4a-2)^{3}\cdot(-a^4+5a^2+a-2)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -32768 \) = \(-2^{3}\cdot8^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{4083203}{16} a^{4} + \frac{519035989}{16} a^{3} + \frac{584541887}{16} a^{2} - \frac{935812163}{16} a + \frac{86216709}{8} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-98 a^{4} - 72 a^{3} + 537 a^{2} + 490 a - 135 : 1904 a^{4} + 1385 a^{3} - 10414 a^{2} - 9483 a + 2614 : 1\right)$
Height \(0.58268274163500325318366009131231683341\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-2 a^{4} - \frac{7}{4} a^{3} + 12 a^{2} + \frac{41}{4} a - \frac{21}{4} : -\frac{5}{2} a^{4} - \frac{19}{8} a^{3} + 13 a^{2} + \frac{121}{8} a - \frac{5}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.58268274163500325318366009131231683341 \)
Period: \( 686.00635928268303456681940897842989306 \)
Tamagawa product: \( 2 \)  =  \(1\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 2.37739691 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+4a-2)\) \(2\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)
\((-a^4+5a^2+a-2)\) \(8\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 16.1-e consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.