Properties

Label 5.5.173513.1-17.1-a2
Base field 5.5.173513.1
Conductor norm \( 17 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.173513.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 5 x^{3} + 3 x^{2} + 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 3, -5, -2, 1]))
 
gp: K = nfinit(Polrev([-1, 3, 3, -5, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 3, -5, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-a^{3}-7a^{2}-a+4\right){x}{y}+\left(a^{4}-2a^{3}-5a^{2}+4a+3\right){y}={x}^{3}+\left(2a^{4}-3a^{3}-11a^{2}-a+4\right){x}^{2}+\left(-12a^{4}+39a^{3}+7a^{2}-29a-4\right){x}+28a^{4}-120a^{3}+80a^{2}+78a-69\)
sage: E = EllipticCurve([K([4,-1,-7,-1,1]),K([4,-1,-11,-3,2]),K([3,4,-5,-2,1]),K([-4,-29,7,39,-12]),K([-69,78,80,-120,28])])
 
gp: E = ellinit([Polrev([4,-1,-7,-1,1]),Polrev([4,-1,-11,-3,2]),Polrev([3,4,-5,-2,1]),Polrev([-4,-29,7,39,-12]),Polrev([-69,78,80,-120,28])], K);
 
magma: E := EllipticCurve([K![4,-1,-7,-1,1],K![4,-1,-11,-3,2],K![3,4,-5,-2,1],K![-4,-29,7,39,-12],K![-69,78,80,-120,28]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-2a^3-5a^2+a+2)\) = \((a^4-2a^3-5a^2+a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 17 \) = \(17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((14a^4-38a^3-35a^2+47a-30)\) = \((a^4-2a^3-5a^2+a+2)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 24137569 \) = \(17^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{3015149053665871}{24137569} a^{4} - \frac{764713166787431}{24137569} a^{3} + \frac{28972470067066415}{24137569} a^{2} + \frac{15096145370756503}{24137569} a - \frac{5961152725283797}{24137569} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(a^{4} - 2 a^{3} - 4 a^{2} + 3 : -a^{4} + a^{3} + 8 a^{2} - 2 a - 6 : 1\right)$ $\left(-\frac{1}{2} a^{4} + \frac{11}{2} a^{2} - \frac{1}{4} a - \frac{17}{4} : \frac{7}{4} a^{4} - \frac{27}{8} a^{3} - \frac{63}{8} a^{2} + \frac{3}{4} a + \frac{37}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 650.76109411303198030872709142609685233 \)
Tamagawa product: \( 6 \)
Torsion order: \(4\)
Leading coefficient: \( 2.34340218 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-2a^3-5a^2+a+2)\) \(17\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(3\) 3Ns

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 17.1-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.