Properties

Label 5.5.161121.1-3.1-b4
Base field 5.5.161121.1
Conductor norm \( 3 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.161121.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 6 x^{3} + 3 x^{2} + 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 5, 3, -6, -1, 1]))
 
gp: K = nfinit(Polrev([1, 5, 3, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 5, 3, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-2a^{4}+3a^{3}+11a^{2}-10a-6\right){x}{y}+\left(a^{3}-5a\right){y}={x}^{3}+\left(a^{3}-6a-2\right){x}^{2}+\left(1135a^{4}-1723a^{3}-5889a^{2}+6565a+1790\right){x}+26992a^{4}-41489a^{3}-139745a^{2}+157332a+47655\)
sage: E = EllipticCurve([K([-6,-10,11,3,-2]),K([-2,-6,0,1,0]),K([0,-5,0,1,0]),K([1790,6565,-5889,-1723,1135]),K([47655,157332,-139745,-41489,26992])])
 
gp: E = ellinit([Polrev([-6,-10,11,3,-2]),Polrev([-2,-6,0,1,0]),Polrev([0,-5,0,1,0]),Polrev([1790,6565,-5889,-1723,1135]),Polrev([47655,157332,-139745,-41489,26992])], K);
 
magma: E := EllipticCurve([K![-6,-10,11,3,-2],K![-2,-6,0,1,0],K![0,-5,0,1,0],K![1790,6565,-5889,-1723,1135],K![47655,157332,-139745,-41489,26992]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-a^3-6a^2+3a+4)\) = \((a^4-a^3-6a^2+3a+4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 3 \) = \(3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^2-a-2)\) = \((a^4-a^3-6a^2+3a+4)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -27 \) = \(-3^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{10947981839295713687464790827586754793436}{27} a^{4} - \frac{16910116865672541902732883385121893663963}{27} a^{3} - \frac{56478851274393237585283385062065675883994}{27} a^{2} + \frac{63601626922138511052720584288730205307096}{27} a + \frac{20103252580374097231986758925581632058597}{27} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.038247934103890984998599933095103726834 \)
Tamagawa product: \( 3 \)
Torsion order: \(1\)
Leading coefficient: \( 0.686349502 \)
Analytic order of Ш: \( 2401 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-a^3-6a^2+3a+4)\) \(3\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(7\) 7B.1.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 7 and 21.
Its isogeny class 3.1-b consists of curves linked by isogenies of degrees dividing 21.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.