Properties

Label 5.5.149169.1-9.1-b1
Base field 5.5.149169.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.149169.1

Generator \(a\), with minimal polynomial \( x^{5} - 6 x^{3} - 3 x^{2} + 4 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 4, -3, -6, 0, 1]))
 
gp: K = nfinit(Polrev([1, 4, -3, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 4, -3, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{4}-a^{3}-10a^{2}-a+4\right){x}{y}+\left(a^{3}-a^{2}-3a+2\right){y}={x}^{3}+\left(-a^{3}+2a^{2}+4a-5\right){x}^{2}+\left(27a^{4}+23a^{3}-147a^{2}-204a-41\right){x}+175a^{4}+132a^{3}-950a^{2}-1241a-236\)
sage: E = EllipticCurve([K([4,-1,-10,-1,2]),K([-5,4,2,-1,0]),K([2,-3,-1,1,0]),K([-41,-204,-147,23,27]),K([-236,-1241,-950,132,175])])
 
gp: E = ellinit([Polrev([4,-1,-10,-1,2]),Polrev([-5,4,2,-1,0]),Polrev([2,-3,-1,1,0]),Polrev([-41,-204,-147,23,27]),Polrev([-236,-1241,-950,132,175])], K);
 
magma: E := EllipticCurve([K![4,-1,-10,-1,2],K![-5,4,2,-1,0],K![2,-3,-1,1,0],K![-41,-204,-147,23,27],K![-236,-1241,-950,132,175]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+a^2+4a-1)\) = \((-a^4+a^3+4a^2-1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(3^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4a^4+3a^3+20a^2-7)\) = \((-a^4+a^3+4a^2-1)^{7}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -2187 \) = \(-3^{7}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{48552525146}{3} a^{4} + \frac{36513739424}{3} a^{3} - \frac{263855133073}{3} a^{2} - \frac{344088812371}{3} a - \frac{64560563147}{3} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 241.29423160411227936595884836674893858 \)
Tamagawa product: \( 2 \)
Torsion order: \(1\)
Leading coefficient: \( 1.24950399 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+a^3+4a^2-1)\) \(3\) \(2\) \(I_{1}^{*}\) Additive \(-1\) \(2\) \(7\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 9.1-b consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.