Properties

Label 4.4.9225.1-4.2-b5
Base field 4.4.9225.1
Conductor norm \( 4 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.9225.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 10 x^{2} + 7 x + 19 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([19, 7, -10, -1, 1]))
 
gp: K = nfinit(Polrev([19, 7, -10, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![19, 7, -10, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{4}a^{3}-\frac{1}{2}a+\frac{1}{4}\right){x}{y}+\left(\frac{1}{4}a^{3}+a^{2}-\frac{1}{2}a-\frac{19}{4}\right){y}={x}^{3}+\left(-\frac{1}{4}a^{3}+\frac{5}{2}a+\frac{3}{4}\right){x}^{2}+\left(-\frac{141}{4}a^{3}+76a^{2}+\frac{521}{2}a-\frac{2193}{4}\right){x}+375a^{3}-826a^{2}-2759a+5942\)
sage: E = EllipticCurve([K([1/4,-1/2,0,1/4]),K([3/4,5/2,0,-1/4]),K([-19/4,-1/2,1,1/4]),K([-2193/4,521/2,76,-141/4]),K([5942,-2759,-826,375])])
 
gp: E = ellinit([Polrev([1/4,-1/2,0,1/4]),Polrev([3/4,5/2,0,-1/4]),Polrev([-19/4,-1/2,1,1/4]),Polrev([-2193/4,521/2,76,-141/4]),Polrev([5942,-2759,-826,375])], K);
 
magma: E := EllipticCurve([K![1/4,-1/2,0,1/4],K![3/4,5/2,0,-1/4],K![-19/4,-1/2,1,1/4],K![-2193/4,521/2,76,-141/4],K![5942,-2759,-826,375]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/2a^3+a^2-2a-7/2)\) = \((1/2a^3+a^2-2a-7/2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 4 \) = \(4\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^3-2a^2+7a+12)\) = \((1/2a^3+a^2-2a-7/2)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 256 \) = \(4^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{18319255}{64} a^{3} - 633055 a^{2} - \frac{67502955}{32} a + \frac{292378267}{64} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(\frac{13}{16} a^{3} - 2 a^{2} - \frac{49}{8} a + \frac{201}{16} : \frac{1}{8} a^{2} + \frac{5}{8} a - \frac{9}{8} : 1\right)$ $\left(\frac{3}{4} a^{3} - \frac{7}{4} a^{2} - \frac{25}{4} a + \frac{49}{4} : -\frac{1}{8} a^{3} + \frac{5}{8} a^{2} + \frac{5}{8} a - \frac{17}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1135.9285986068540214894923954682042304 \)
Tamagawa product: \( 2 \)
Torsion order: \(4\)
Leading coefficient: \( 1.47835202067737 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/2a^3+a^2-2a-7/2)\) \(4\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 4.2-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.