Properties

Label 4.4.9225.1-25.1-c6
Base field 4.4.9225.1
Conductor norm \( 25 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.9225.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 10 x^{2} + 7 x + 19 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([19, 7, -10, -1, 1]))
 
gp: K = nfinit(Polrev([19, 7, -10, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![19, 7, -10, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(\frac{1}{4}a^{3}+a^{2}-\frac{1}{2}a-\frac{19}{4}\right){y}={x}^{3}+\left(\frac{1}{4}a^{3}-\frac{3}{2}a+\frac{1}{4}\right){x}^{2}+\left(\frac{1}{4}a^{3}-a^{2}-\frac{5}{2}a+\frac{25}{4}\right){x}-\frac{3}{2}a^{3}+9a-\frac{11}{2}\)
sage: E = EllipticCurve([K([1,0,0,0]),K([1/4,-3/2,0,1/4]),K([-19/4,-1/2,1,1/4]),K([25/4,-5/2,-1,1/4]),K([-11/2,9,0,-3/2])])
 
gp: E = ellinit([Polrev([1,0,0,0]),Polrev([1/4,-3/2,0,1/4]),Polrev([-19/4,-1/2,1,1/4]),Polrev([25/4,-5/2,-1,1/4]),Polrev([-11/2,9,0,-3/2])], K);
 
magma: E := EllipticCurve([K![1,0,0,0],K![1/4,-3/2,0,1/4],K![-19/4,-1/2,1,1/4],K![25/4,-5/2,-1,1/4],K![-11/2,9,0,-3/2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/2a^3-3a-1/2)\) = \((1/2a^3-3a-1/2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-1/2a^3+3a+1/2)\) = \((1/2a^3-3a-1/2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 25 \) = \(25\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{540595195}{4} a^{3} - \frac{730667933}{5} a^{2} + \frac{10473423273}{10} a + \frac{24675440989}{20} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{3}{4} a^{3} - 2 a^{2} - \frac{11}{2} a + \frac{59}{4} : \frac{13}{4} a^{3} - 8 a^{2} - \frac{49}{2} a + \frac{225}{4} : 1\right)$
Height \(0.75575517239616156002327790653633340556\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{4} a^{2} - \frac{1}{4} a + \frac{5}{4} : -\frac{1}{8} a^{3} - \frac{3}{8} a^{2} + \frac{3}{8} a + \frac{7}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.75575517239616156002327790653633340556 \)
Period: \( 290.80771531875070964759950771297199778 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 2.28825207690562 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/2a^3-3a-1/2)\) \(25\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 25.1-c consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.