Properties

Label 4.4.9225.1-25.1-a1
Base field 4.4.9225.1
Conductor norm \( 25 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.9225.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 10 x^{2} + 7 x + 19 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([19, 7, -10, -1, 1]))
 
gp: K = nfinit(Polrev([19, 7, -10, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![19, 7, -10, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{4}a^{3}+a^{2}-\frac{3}{2}a-\frac{19}{4}\right){x}{y}+\left(\frac{1}{4}a^{3}-\frac{1}{2}a+\frac{1}{4}\right){y}={x}^{3}+\left(a^{2}+a-5\right){x}^{2}+\left(\frac{539}{4}a^{3}+172a^{2}-\frac{2085}{2}a-\frac{5657}{4}\right){x}-\frac{8175}{4}a^{3}-2362a^{2}+\frac{31729}{2}a+\frac{79337}{4}\)
sage: E = EllipticCurve([K([-19/4,-3/2,1,1/4]),K([-5,1,1,0]),K([1/4,-1/2,0,1/4]),K([-5657/4,-2085/2,172,539/4]),K([79337/4,31729/2,-2362,-8175/4])])
 
gp: E = ellinit([Polrev([-19/4,-3/2,1,1/4]),Polrev([-5,1,1,0]),Polrev([1/4,-1/2,0,1/4]),Polrev([-5657/4,-2085/2,172,539/4]),Polrev([79337/4,31729/2,-2362,-8175/4])], K);
 
magma: E := EllipticCurve([K![-19/4,-3/2,1,1/4],K![-5,1,1,0],K![1/4,-1/2,0,1/4],K![-5657/4,-2085/2,172,539/4],K![79337/4,31729/2,-2362,-8175/4]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/2a^3-3a-1/2)\) = \((1/2a^3-3a-1/2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((25)\) = \((1/2a^3-3a-1/2)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 390625 \) = \(25^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{506072727552}{25} a^{3} - \frac{1113403817359}{25} a^{2} - \frac{3724555649524}{25} a + \frac{8012299584804}{25} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{1}{4} a^{3} - a^{2} - \frac{5}{2} a + \frac{21}{4} : -13 a^{3} - 16 a^{2} + 102 a + 138 : 1\right)$
Height \(0.18893879309904039000581947663408335139\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(\frac{17}{4} a^{3} + 3 a^{2} - \frac{67}{2} a - \frac{115}{4} : \frac{7}{2} a^{3} + 3 a^{2} - 26 a - \frac{43}{2} : 1\right)$ $\left(-\frac{29}{16} a^{3} - \frac{7}{2} a^{2} + \frac{109}{8} a + \frac{427}{16} : -\frac{9}{16} a^{3} - \frac{3}{2} a^{2} + \frac{41}{8} a + \frac{245}{16} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.18893879309904039000581947663408335139 \)
Period: \( 1163.2308612750028385903980308518879911 \)
Tamagawa product: \( 4 \)
Torsion order: \(4\)
Leading coefficient: \( 2.28825207690562 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/2a^3-3a-1/2)\) \(25\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 25.1-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.