Properties

Label 4.4.7488.1-9.1-a5
Base field 4.4.7488.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 6 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.7488.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 4 x^{2} + 2 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 2, -4, -2, 1]))
 
gp: K = nfinit(Polrev([1, 2, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 2, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-2a^{2}-3a+2\right){x}{y}+{y}={x}^{3}+\left(-a^{3}+a^{2}+6a+1\right){x}^{2}+\left(4a^{3}-9a^{2}-9a-3\right){x}+a^{3}-6a^{2}+8a+3\)
sage: E = EllipticCurve([K([2,-3,-2,1]),K([1,6,1,-1]),K([1,0,0,0]),K([-3,-9,-9,4]),K([3,8,-6,1])])
 
gp: E = ellinit([Polrev([2,-3,-2,1]),Polrev([1,6,1,-1]),Polrev([1,0,0,0]),Polrev([-3,-9,-9,4]),Polrev([3,8,-6,1])], K);
 
magma: E := EllipticCurve([K![2,-3,-2,1],K![1,6,1,-1],K![1,0,0,0],K![-3,-9,-9,4],K![3,8,-6,1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-2a^2-3a+1)\) = \((a^3-2a^2-3a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-3a^3+6a^2+9a-3)\) = \((a^3-2a^2-3a+1)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 729 \) = \(9^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{12413440}{9} a^{3} + \frac{24826880}{9} a^{2} + \frac{12413440}{3} a + \frac{9047744}{9} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-2 a^{3} + 6 a^{2} : 5 a^{3} - 19 a^{2} + 10 a + 5 : 1\right)$
Height \(0.97137802925084081290577493246976424037\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{2} + 2 a + 3 : 2 a^{3} - 3 a^{2} - 9 a - 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.97137802925084081290577493246976424037 \)
Period: \( 445.03967444381771234628142985218807474 \)
Tamagawa product: \( 3 \)
Torsion order: \(6\)
Leading coefficient: \( 1.66526300107125 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-2a^2-3a+1)\) \(9\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3Cs.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 9.1-a consists of curves linked by isogenies of degrees dividing 18.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.