Properties

Label 4.4.7056.1-9.3-a2
Base field \(\Q(\sqrt{3}, \sqrt{7})\)
Conductor norm \( 9 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 6 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{3}, \sqrt{7})\)

Generator \(a\), with minimal polynomial \( x^{4} - 5 x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, -5, 0, 1]))
 
gp: K = nfinit(Polrev([1, 0, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}+a-3\right){x}{y}+{y}={x}^{3}+\left(-a^{3}+a^{2}+4a-3\right){x}^{2}+\left(-22a^{3}+11a^{2}+106a-47\right){x}+98a^{3}-43a^{2}-467a+213\)
sage: E = EllipticCurve([K([-3,1,1,0]),K([-3,4,1,-1]),K([1,0,0,0]),K([-47,106,11,-22]),K([213,-467,-43,98])])
 
gp: E = ellinit([Polrev([-3,1,1,0]),Polrev([-3,4,1,-1]),Polrev([1,0,0,0]),Polrev([-47,106,11,-22]),Polrev([213,-467,-43,98])], K);
 
magma: E := EllipticCurve([K![-3,1,1,0],K![-3,4,1,-1],K![1,0,0,0],K![-47,106,11,-22],K![213,-467,-43,98]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-4a)\) = \((-a-1)\cdot(-a^3+5a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(3\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-9a^2+9a+18)\) = \((-a-1)^{6}\cdot(-a^3+5a-1)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 59049 \) = \(3^{6}\cdot3^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{4301312}{27} a^{3} - \frac{8602624}{9} a + \frac{11388736}{27} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(6 a^{3} - 3 a^{2} - 29 a + 13 : 37 a^{3} - 16 a^{2} - 176 a + 79 : 1\right)$
Height \(0.077414024668015782569919519312503639504\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a + 1 : 4 a^{3} - 4 a^{2} - 23 a + 10 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.077414024668015782569919519312503639504 \)
Period: \( 1179.9840110213103214505835189896997572 \)
Tamagawa product: \( 12 \)  =  \(( 2 \cdot 3 )\cdot2\)
Torsion order: \(6\)
Leading coefficient: \( 1.44995732281060 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a-1)\) \(3\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\((-a^3+5a-1)\) \(3\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 9.3-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q(\sqrt{7}) \) 2.2.28.1-27.2-a4
\(\Q(\sqrt{7}) \) 2.2.28.1-27.1-b4