Properties

Label 4.4.6809.1-22.1-b4
Base field 4.4.6809.1
Conductor norm \( 22 \)
CM no
Base change no
Q-curve no
Torsion order \( 6 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.6809.1

Generator \(a\), with minimal polynomial \( x^{4} - 5 x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, -5, 0, 1]))
 
gp: K = nfinit(Polrev([1, -1, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-5a-1\right){x}{y}+a{y}={x}^{3}+\left(-a^{3}-a^{2}+5a+3\right){x}^{2}+\left(-22a^{3}-45a^{2}+8a+16\right){x}-147a^{3}-331a^{2}-21a+71\)
sage: E = EllipticCurve([K([-1,-5,0,1]),K([3,5,-1,-1]),K([0,1,0,0]),K([16,8,-45,-22]),K([71,-21,-331,-147])])
 
gp: E = ellinit([Polrev([-1,-5,0,1]),Polrev([3,5,-1,-1]),Polrev([0,1,0,0]),Polrev([16,8,-45,-22]),Polrev([71,-21,-331,-147])], K);
 
magma: E := EllipticCurve([K![-1,-5,0,1],K![3,5,-1,-1],K![0,1,0,0],K![16,8,-45,-22],K![71,-21,-331,-147]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-3)\) = \((a+1)\cdot(a^3-5a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 22 \) = \(2\cdot11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^3+2a^2+7a-8)\) = \((a+1)^{4}\cdot(a^3-5a+1)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -1936 \) = \(-2^{4}\cdot11^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{2042536312629}{176} a^{3} + \frac{4227375539575}{176} a^{2} + \frac{365938930215}{44} a - \frac{89719838093}{16} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{3} - a^{2} + 2 a + 1 : -2 a^{3} - a^{2} + 9 a + 6 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 772.33024567541227973248421603009861519 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(6\)
Leading coefficient: \( 1.03996534225985 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+1)\) \(2\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((a^3-5a+1)\) \(11\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 22.1-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.