Properties

Label 4.4.4225.1-29.1-b1
Base field \(\Q(\sqrt{5}, \sqrt{13})\)
Conductor norm \( 29 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{5}, \sqrt{13})\)

Generator \(a\), with minimal polynomial \( x^{4} - 9 x^{2} + 4 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([4, 0, -9, 0, 1]))
 
gp: K = nfinit(Polrev([4, 0, -9, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 0, -9, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(-\frac{1}{4}a^{3}+\frac{11}{4}a+\frac{3}{2}\right){x}{y}+\left(-\frac{1}{4}a^{3}+\frac{11}{4}a+\frac{1}{2}\right){y}={x}^{3}+\left(-\frac{1}{2}a^{3}+\frac{1}{2}a^{2}+4a\right){x}^{2}+\left(\frac{3}{4}a^{3}+\frac{3}{2}a^{2}-\frac{27}{4}a-\frac{11}{2}\right){x}+\frac{17}{4}a^{3}+\frac{7}{2}a^{2}-\frac{145}{4}a-\frac{51}{2}\)
sage: E = EllipticCurve([K([3/2,11/4,0,-1/4]),K([0,4,1/2,-1/2]),K([1/2,11/4,0,-1/4]),K([-11/2,-27/4,3/2,3/4]),K([-51/2,-145/4,7/2,17/4])])
 
gp: E = ellinit([Polrev([3/2,11/4,0,-1/4]),Polrev([0,4,1/2,-1/2]),Polrev([1/2,11/4,0,-1/4]),Polrev([-11/2,-27/4,3/2,3/4]),Polrev([-51/2,-145/4,7/2,17/4])], K);
 
magma: E := EllipticCurve([K![3/2,11/4,0,-1/4],K![0,4,1/2,-1/2],K![1/2,11/4,0,-1/4],K![-11/2,-27/4,3/2,3/4],K![-51/2,-145/4,7/2,17/4]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-1/4a^3+1/2a^2+9/4a-1/2)\) = \((-1/4a^3+1/2a^2+9/4a-1/2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 29 \) = \(29\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1/4a^3-1/2a^2-9/4a+1/2)\) = \((-1/4a^3+1/2a^2+9/4a-1/2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -29 \) = \(-29\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{42577135}{116} a^{3} + \frac{61063303}{58} a^{2} + \frac{23791499}{116} a - \frac{25310505}{58} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{5}{16} a^{3} - \frac{1}{8} a^{2} - \frac{49}{16} a - \frac{15}{8} : -\frac{5}{16} a^{3} + \frac{57}{16} a + 3 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 497.36870993014090070663903210224994942 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 1.91295657665439 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-1/4a^3+1/2a^2+9/4a-1/2)\) \(29\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 29.1-b consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.