Base field 4.4.2225.1
Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 5 x^{2} + 2 x + 4 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $\left(-\frac{11}{8} a^{3} + \frac{21}{8} a^{2} + \frac{109}{8} a + \frac{31}{4} : -\frac{33}{8} a^{3} - \frac{41}{8} a^{2} + \frac{79}{8} a + \frac{73}{8} : 1\right)$ | $0$ | $2$ | 
Invariants
| Conductor: | $\frak{N}$ | = | \((1)\) | = | \((1)\) | 
|  | |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 1 \) | = | 1 | 
|  | |||||
| Discriminant: | $\Delta$ | = | $1$ | ||
| Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((1)\) | = | \((1)\) | 
|  | |||||
| Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( -1 \) | = | -1 | 
|  | |||||
| j-invariant: | $j$ | = | \( \frac{3464946905534287422448807585}{2} a^{3} - \frac{6307067008351224343169529695}{2} a^{2} - \frac{12151367540253075049485032893}{2} a + 8448521965185185103366369798 \) | ||
|  | |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
|  | |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 0 \) | 
|  | |||
| Mordell-Weil rank: | $r$ | = | \(0\) | 
| Regulator: | $\mathrm{Reg}(E/K)$ | = | \( 1 \) | 
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | = | \( 1 \) | 
| Global period: | $\Omega(E/K)$ | ≈ | \( 7.6913614842102498395918828051015952505 \) | 
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 1 \) | 
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(2\) | 
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 0.366877209043145 \) | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 9 \) (rounded) | 
BSD formula
$$\begin{aligned}0.366877209 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 9 \cdot 7.691361 \cdot 1 \cdot 1 } { {2^2 \cdot 47.169906} } \\ & \approx 0.366877209 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is semistable. There are no primes of bad reduction.
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
| prime | Image of Galois Representation | 
|---|---|
| \(2\) | 2B | 
| \(3\) | 3B.1.2 | 
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies  of degree \(d\) for \(d=\)
2, 3, 4, 6, 8, 12 and 24.
Its isogeny class
1.1-a
consists of  curves linked by isogenies of
degrees dividing 24.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.
