Properties

Label 4.4.17609.1-28.1-b1
Base field 4.4.17609.1
Conductor norm \( 28 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.17609.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 7 x^{2} + 10 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 10, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 10, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 10, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}+a^{2}-5a-1\right){x}{y}+\left(a^{3}+a^{2}-5a-1\right){y}={x}^{3}+\left(a^{3}-6a+2\right){x}^{2}+\left(-1895a^{3}-2285a^{2}+8193a-922\right){x}-89471a^{3}-108595a^{2}+385907a-40395\)
sage: E = EllipticCurve([K([-1,-5,1,1]),K([2,-6,0,1]),K([-1,-5,1,1]),K([-922,8193,-2285,-1895]),K([-40395,385907,-108595,-89471])])
 
gp: E = ellinit([Polrev([-1,-5,1,1]),Polrev([2,-6,0,1]),Polrev([-1,-5,1,1]),Polrev([-922,8193,-2285,-1895]),Polrev([-40395,385907,-108595,-89471])], K);
 
magma: E := EllipticCurve([K![-1,-5,1,1],K![2,-6,0,1],K![-1,-5,1,1],K![-922,8193,-2285,-1895],K![-40395,385907,-108595,-89471]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-7a+6)\) = \((a^3+a^2-5a+1)^{2}\cdot(-a^3+6a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 28 \) = \(2^{2}\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-25a^3-18a^2+140a+5)\) = \((a^3+a^2-5a+1)^{4}\cdot(-a^3+6a-2)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -1882384 \) = \(-2^{4}\cdot7^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{58991001474401370845134}{117649} a^{3} - \frac{28633695056137501631935}{117649} a^{2} + \frac{370404780368043596995741}{117649} a - \frac{39714126185228454891650}{117649} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(18 a^{3} + \frac{87}{4} a^{2} - \frac{311}{4} a + \frac{17}{2} : -\frac{67}{2} a^{3} - \frac{325}{8} a^{2} + \frac{579}{4} a - \frac{113}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 7.1189385516217228590402904215090202357 \)
Tamagawa product: \( 6 \)  =  \(1\cdot( 2 \cdot 3 )\)
Torsion order: \(2\)
Leading coefficient: \( 0.724238596975327 \)
Analytic order of Ш: \( 9 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3+a^2-5a+1)\) \(2\) \(1\) \(IV\) Additive \(-1\) \(2\) \(4\) \(0\)
\((-a^3+6a-2)\) \(7\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 28.1-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.