Properties

Label 4.4.17428.1-12.1-c2
Base field 4.4.17428.1
Conductor norm \( 12 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.17428.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 6 x^{2} + 4 x + 6 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([6, 4, -6, -1, 1]))
 
gp: K = nfinit(Polrev([6, 4, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![6, 4, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-2\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(-a^{3}+a^{2}+5a-3\right){x}^{2}+\left(-9a^{2}-18a\right){x}+4a^{3}+14a^{2}+10a-5\)
sage: E = EllipticCurve([K([-2,0,1,0]),K([-3,5,1,-1]),K([-2,0,1,0]),K([0,-18,-9,0]),K([-5,10,14,4])])
 
gp: E = ellinit([Polrev([-2,0,1,0]),Polrev([-3,5,1,-1]),Polrev([-2,0,1,0]),Polrev([0,-18,-9,0]),Polrev([-5,10,14,4])], K);
 
magma: E := EllipticCurve([K![-2,0,1,0],K![-3,5,1,-1],K![-2,0,1,0],K![0,-18,-9,0],K![-5,10,14,4]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-6)\) = \((a^3+a^2-3a-2)^{2}\cdot(a^2-a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 12 \) = \(2^{2}\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-9a^3+16a^2+34a-66)\) = \((a^3+a^2-3a-2)^{8}\cdot(a^2-a-3)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 186624 \) = \(2^{8}\cdot3^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{24959305}{729} a^{3} - \frac{44565748}{729} a^{2} - \frac{12666058}{81} a + \frac{192446194}{729} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(2 a^{3} + a^{2} - 9 a - 5 : -a^{3} - 2 a^{2} + 3 a + 5 : 1\right)$ $\left(-\frac{1}{4} a^{3} - \frac{1}{2} a^{2} + 2 a + \frac{7}{2} : -\frac{1}{8} a^{3} - a^{2} - \frac{1}{4} a + \frac{9}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 801.81856467953287408043639021722774131 \)
Tamagawa product: \( 6 \)  =  \(1\cdot( 2 \cdot 3 )\)
Torsion order: \(4\)
Leading coefficient: \( 2.27763222845421 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3+a^2-3a-2)\) \(2\) \(1\) \(IV^{*}\) Additive \(-1\) \(2\) \(8\) \(0\)
\((a^2-a-3)\) \(3\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 12.1-c consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.