Properties

Label 4.4.16609.1-6.1-a2
Base field 4.4.16609.1
Conductor norm \( 6 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.16609.1

Generator \(a\), with minimal polynomial \( x^{4} - 7 x^{2} - x + 9 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([9, -1, -7, 0, 1]))
 
gp: K = nfinit(Polrev([9, -1, -7, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9, -1, -7, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-4a\right){x}{y}+{y}={x}^{3}+\left(-a^{2}+5\right){x}^{2}+\left(147a^{3}+172a^{2}-823a-1110\right){x}-1242a^{3}-1468a^{2}+6962a+9470\)
sage: E = EllipticCurve([K([0,-4,0,1]),K([5,0,-1,0]),K([1,0,0,0]),K([-1110,-823,172,147]),K([9470,6962,-1468,-1242])])
 
gp: E = ellinit([Polrev([0,-4,0,1]),Polrev([5,0,-1,0]),Polrev([1,0,0,0]),Polrev([-1110,-823,172,147]),Polrev([9470,6962,-1468,-1242])], K);
 
magma: E := EllipticCurve([K![0,-4,0,1],K![5,0,-1,0],K![1,0,0,0],K![-1110,-823,172,147],K![9470,6962,-1468,-1242]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2+3)\) = \((-a^2-a+2)\cdot(a^2-a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 6 \) = \(2\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^3+a^2-9a)\) = \((-a^2-a+2)^{2}\cdot(a^2-a-3)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 2916 \) = \(2^{2}\cdot3^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1106561590963}{2916} a^{3} + \frac{262445678183}{324} a^{2} + \frac{1352062034885}{1458} a - \frac{4665604095371}{2916} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(4 a^{3} + 5 a^{2} - 23 a - 33 : 7 a^{3} + 8 a^{2} - 38 a - 50 : 1\right)$ $\left(-\frac{5}{4} a^{3} - \frac{3}{4} a^{2} + \frac{13}{2} a + \frac{19}{4} : -\frac{5}{8} a^{3} - \frac{15}{8} a^{2} + \frac{19}{4} a + \frac{95}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 486.15937402994335077496077347213717014 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 0.943076515696087 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^2-a+2)\) \(2\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((a^2-a-3)\) \(3\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 6.1-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.