Base field \(\Q(\sqrt{2}, \sqrt{5})\)
Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} + 4 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $\left(\frac{1}{2} a^{3} - 3 a + 1 : 0 : 1\right)$ | $0$ | $2$ | 
| $\left(\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - 3 a + 3 : 0 : 1\right)$ | $0$ | $2$ | 
Invariants
| Conductor: | $\frak{N}$ | = | \((2)\) | = | \((1/2a^3-2a)^{2}\) | 
|  | |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 16 \) | = | \(4^{2}\) | 
|  | |||||
| Discriminant: | $\Delta$ | = | $16$ | ||
| Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((16)\) | = | \((1/2a^3-2a)^{8}\) | 
|  | |||||
| Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 65536 \) | = | \(4^{8}\) | 
|  | |||||
| j-invariant: | $j$ | = | \( -30720 a^{3} + 245760 a + 204800 \) | ||
|  | |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
|  | |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 0 \) | 
|  | |||
| Mordell-Weil rank: | $r$ | = | \(0\) | 
| Regulator: | $\mathrm{Reg}(E/K)$ | = | \( 1 \) | 
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | = | \( 1 \) | 
| Global period: | $\Omega(E/K)$ | ≈ | \( 533.16609618119511995513318963133010257 \) | 
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 1 \) | 
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(4\) | 
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 0.833072025283117 \) | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) | 
BSD formula
$$\begin{aligned}0.833072025 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 533.166096 \cdot 1 \cdot 1 } { {4^2 \cdot 40.000000} } \\ & \approx 0.833072025 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There is only one prime $\frak{p}$ of bad reduction.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) | 
|---|---|---|---|---|---|---|---|---|
| \((1/2a^3-2a)\) | \(4\) | \(1\) | \(IV^{*}\) | Additive | \(1\) | \(2\) | \(8\) | \(0\) | 
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
| prime | Image of Galois Representation | 
|---|---|
| \(2\) | 2Cs | 
| \(3\) | 3B | 
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies  of degree \(d\) for \(d=\)
2, 3, 4, 6 and 12.
Its isogeny class
16.1-a
consists of  curves linked by isogenies of
degrees dividing 24.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.
