Properties

Label 4.4.15952.1-9.1-b7
Base field 4.4.15952.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 6 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.15952.1

Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} - 2 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -2, -6, 0, 1]))
 
gp: K = nfinit(Polrev([1, -2, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-5a\right){x}{y}+\left(a^{2}-a-3\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(4a^{3}+a^{2}-21a-8\right){x}+2a^{3}-11a-7\)
sage: E = EllipticCurve([K([0,-5,0,1]),K([1,1,0,0]),K([-3,-1,1,0]),K([-8,-21,1,4]),K([-7,-11,0,2])])
 
gp: E = ellinit([Polrev([0,-5,0,1]),Polrev([1,1,0,0]),Polrev([-3,-1,1,0]),Polrev([-8,-21,1,4]),Polrev([-7,-11,0,2])], K);
 
magma: E := EllipticCurve([K![0,-5,0,1],K![1,1,0,0],K![-3,-1,1,0],K![-8,-21,1,4],K![-7,-11,0,2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+6a+4)\) = \((a^2+2a)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(3^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2a^3+2a^2+12a+3)\) = \((a^2+2a)^{7}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -2187 \) = \(-3^{7}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{11187968}{3} a^{3} - \frac{7136320}{3} a^{2} - \frac{62574976}{3} a + \frac{17544448}{3} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{3} + \frac{9}{2} a + 2 : \frac{3}{4} a^{3} - \frac{1}{2} a^{2} - \frac{5}{4} a + \frac{3}{2} : 1\right)$
Height \(0.66153549219471721468466395331460070084\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a - 1 : 2 a + 3 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.66153549219471721468466395331460070084 \)
Period: \( 1091.3593057246608315267815571191850285 \)
Tamagawa product: \( 4 \)
Torsion order: \(6\)
Leading coefficient: \( 2.54056796087507 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2+2a)\) \(3\) \(4\) \(I_{1}^{*}\) Additive \(-1\) \(2\) \(7\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 9.1-b consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.