Properties

Label 4.4.15952.1-9.1-b4
Base field 4.4.15952.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 6 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.15952.1

Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} - 2 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -2, -6, 0, 1]))
 
gp: K = nfinit(Polrev([1, -2, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-2\right){x}{y}+\left(-a^{3}+a^{2}+5a-2\right){y}={x}^{3}+\left(-a^{3}+a^{2}+5a-3\right){x}^{2}+\left(25a^{3}-49a^{2}-42a+6\right){x}-129a^{3}+261a^{2}+193a-26\)
sage: E = EllipticCurve([K([-2,-1,1,0]),K([-3,5,1,-1]),K([-2,5,1,-1]),K([6,-42,-49,25]),K([-26,193,261,-129])])
 
gp: E = ellinit([Polrev([-2,-1,1,0]),Polrev([-3,5,1,-1]),Polrev([-2,5,1,-1]),Polrev([6,-42,-49,25]),Polrev([-26,193,261,-129])], K);
 
magma: E := EllipticCurve([K![-2,-1,1,0],K![-3,5,1,-1],K![-2,5,1,-1],K![6,-42,-49,25],K![-26,193,261,-129]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+6a+4)\) = \((a^2+2a)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(3^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((4a^3+5a^2-29a-13)\) = \((a^2+2a)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -59049 \) = \(-3^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{3309323120}{81} a^{3} + \frac{8519772056}{81} a^{2} + \frac{2070998504}{81} a - \frac{1285496552}{81} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(4 a^{3} - 5 a^{2} - 16 a + 6 : 6 a^{3} - a^{2} - 45 a + 20 : 1\right)$
Height \(0.66153549219471721468466395331460070084\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-3 a^{3} + 4 a^{2} + 8 a + 4 : 14 a^{3} - 41 a^{2} + 3 a + 25 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.66153549219471721468466395331460070084 \)
Period: \( 1091.3593057246608315267815571191850285 \)
Tamagawa product: \( 4 \)
Torsion order: \(6\)
Leading coefficient: \( 2.54056796087507 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2+2a)\) \(3\) \(4\) \(I_{4}^{*}\) Additive \(-1\) \(2\) \(10\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 9.1-b consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.