Properties

Label 4.4.15317.1-8.1-a1
Base field 4.4.15317.1
Conductor norm \( 8 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.15317.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 4 x^{2} + 5 x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 5, -4, -2, 1]))
 
gp: K = nfinit(Polrev([2, 5, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 5, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-a^{2}-4a+1\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+\left(a^{3}-a^{2}-5a\right){x}^{2}+\left(12a^{3}+a^{2}-69a-63\right){x}+73a^{3}-68a^{2}-339a-24\)
sage: E = EllipticCurve([K([1,-4,-1,1]),K([0,-5,-1,1]),K([-3,0,1,0]),K([-63,-69,1,12]),K([-24,-339,-68,73])])
 
gp: E = ellinit([Polrev([1,-4,-1,1]),Polrev([0,-5,-1,1]),Polrev([-3,0,1,0]),Polrev([-63,-69,1,12]),Polrev([-24,-339,-68,73])], K);
 
magma: E := EllipticCurve([K![1,-4,-1,1],K![0,-5,-1,1],K![-3,0,1,0],K![-63,-69,1,12],K![-24,-339,-68,73]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-a^2-5a)\) = \((-a)\cdot(-a^2+a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 8 \) = \(2\cdot4\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1635a^3-605a^2-7083a-1154)\) = \((-a)^{40}\cdot(-a^2+a+1)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -70368744177664 \) = \(-2^{40}\cdot4^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{133425326437522565}{1099511627776} a^{3} - \frac{82385904144071959}{274877906944} a^{2} - \frac{101331943756558911}{274877906944} a + \frac{887810214505548273}{1099511627776} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{3}{2} a^{3} - 2 a^{2} - \frac{23}{4} a + \frac{3}{2} : \frac{9}{8} a^{3} - \frac{1}{2} a^{2} - \frac{13}{2} a - 4 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 225.23375383717647691659884721483792274 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 0.909948101392787 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(2\) \(2\) \(I_{40}\) Non-split multiplicative \(1\) \(1\) \(40\) \(40\)
\((-a^2+a+1)\) \(4\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 8.1-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.