Properties

Label 4.4.15317.1-4.1-a6
Base field 4.4.15317.1
Conductor norm \( 4 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.15317.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 4 x^{2} + 5 x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 5, -4, -2, 1]))
 
gp: K = nfinit(Polrev([2, 5, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 5, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-a^{2}-4a+1\right){x}{y}+\left(a^{3}-a^{2}-4a+2\right){y}={x}^{3}+\left(-a^{3}+a^{2}+3a\right){x}^{2}+\left(-213a^{3}+305a^{2}+615a-867\right){x}-2875a^{3}+4341a^{2}+8409a-12175\)
sage: E = EllipticCurve([K([1,-4,-1,1]),K([0,3,1,-1]),K([2,-4,-1,1]),K([-867,615,305,-213]),K([-12175,8409,4341,-2875])])
 
gp: E = ellinit([Polrev([1,-4,-1,1]),Polrev([0,3,1,-1]),Polrev([2,-4,-1,1]),Polrev([-867,615,305,-213]),Polrev([-12175,8409,4341,-2875])], K);
 
magma: E := EllipticCurve([K![1,-4,-1,1],K![0,3,1,-1],K![2,-4,-1,1],K![-867,615,305,-213],K![-12175,8409,4341,-2875]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-a-4)\) = \((-a)\cdot(a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 4 \) = \(2\cdot2\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-13a^3+26a^2+41a-54)\) = \((-a)^{8}\cdot(a-1)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 131072 \) = \(2^{8}\cdot2^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{280401766250925363}{512} a^{3} + \frac{1034629287445097955}{512} a^{2} - \frac{629865483106281211}{512} a - \frac{20638781304796925}{32} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{91}{2} a^{3} - \frac{367}{4} a^{2} - 132 a + 259 : \frac{4467}{8} a^{3} - \frac{6433}{4} a^{2} - \frac{7373}{4} a + \frac{8405}{2} : 1\right)$
Height \(2.5691624343281407373827256376538691091\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{17}{2} a^{3} - 12 a^{2} - \frac{103}{4} a + \frac{61}{2} : -\frac{63}{8} a^{3} + \frac{23}{2} a^{2} + \frac{41}{2} a - 37 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.5691624343281407373827256376538691091 \)
Period: \( 1.6319707604157100822247630564305965714 \)
Tamagawa product: \( 8 \)  =  \(2^{3}\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 2.43921216239754 \)
Analytic order of Ш: \( 9 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(2\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)
\((a-1)\) \(2\) \(1\) \(I_{9}\) Non-split multiplicative \(1\) \(1\) \(9\) \(9\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6, 8, 12 and 24.
Its isogeny class 4.1-a consists of curves linked by isogenies of degrees dividing 24.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.