Properties

Label 4.4.15317.1-2.2-a4
Base field 4.4.15317.1
Conductor norm \( 2 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.15317.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 4 x^{2} + 5 x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 5, -4, -2, 1]))
 
gp: K = nfinit(Polrev([2, 5, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 5, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-5a-1\right){x}{y}+a{y}={x}^{3}+\left(-a^{2}+3\right){x}^{2}+\left(-9a^{3}+14a^{2}+34a-23\right){x}+3a^{3}-12a^{2}-5a+40\)
sage: E = EllipticCurve([K([-1,-5,0,1]),K([3,0,-1,0]),K([0,1,0,0]),K([-23,34,14,-9]),K([40,-5,-12,3])])
 
gp: E = ellinit([Polrev([-1,-5,0,1]),Polrev([3,0,-1,0]),Polrev([0,1,0,0]),Polrev([-23,34,14,-9]),Polrev([40,-5,-12,3])], K);
 
magma: E := EllipticCurve([K![-1,-5,0,1],K![3,0,-1,0],K![0,1,0,0],K![-23,34,14,-9],K![40,-5,-12,3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a-1)\) = \((a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 2 \) = \(2\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^3-3a^2-3a+9)\) = \((a-1)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 16 \) = \(2^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1493163}{16} a^{3} + \frac{985955}{16} a^{2} - \frac{3198779}{16} a - \frac{466281}{8} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(\frac{3}{4} a^{3} - a^{2} - 3 a + \frac{3}{4} : \frac{9}{8} a^{3} - \frac{1}{2} a^{2} - \frac{13}{2} a - \frac{19}{8} : 1\right)$ $\left(\frac{3}{4} a^{3} - \frac{3}{2} a^{2} - \frac{11}{4} a + \frac{5}{2} : \frac{3}{4} a^{3} + \frac{1}{8} a^{2} - \frac{35}{8} a - \frac{9}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1062.8833100306278215819038031462774853 \)
Tamagawa product: \( 2 \)
Torsion order: \(4\)
Leading coefficient: \( 1.07351655056953 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a-1)\) \(2\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 2.2-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.