Properties

Label 4.4.13968.1-4.2-f2
Base field 4.4.13968.1
Conductor norm \( 4 \)
CM no
Base change no
Q-curve no
Torsion order \( 18 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.13968.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 7 x^{2} + 8 x + 4 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([4, 8, -7, -2, 1]))
 
gp: K = nfinit(Polrev([4, 8, -7, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 8, -7, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-3a+1\right){x}{y}+\left(\frac{1}{2}a^{2}+\frac{1}{2}a-1\right){y}={x}^{3}+\left(\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-4a+2\right){x}^{2}+\left(-\frac{131}{2}a^{3}+160a^{2}+\frac{799}{2}a-727\right){x}+\frac{1353}{2}a^{3}-\frac{3261}{2}a^{2}-4104a+7142\)
sage: E = EllipticCurve([K([1,-3,-1/2,1/2]),K([2,-4,-1/2,1/2]),K([-1,1/2,1/2,0]),K([-727,799/2,160,-131/2]),K([7142,-4104,-3261/2,1353/2])])
 
gp: E = ellinit([Polrev([1,-3,-1/2,1/2]),Polrev([2,-4,-1/2,1/2]),Polrev([-1,1/2,1/2,0]),Polrev([-727,799/2,160,-131/2]),Polrev([7142,-4104,-3261/2,1353/2])], K);
 
magma: E := EllipticCurve([K![1,-3,-1/2,1/2],K![2,-4,-1/2,1/2],K![-1,1/2,1/2,0],K![-727,799/2,160,-131/2],K![7142,-4104,-3261/2,1353/2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-1/2a^2+1/2a+3)\) = \((1/2a^2+1/2a-1)\cdot(-1/2a^3+1/2a^2+4a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 4 \) = \(2\cdot2\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-24a^3+232a+144)\) = \((1/2a^2+1/2a-1)^{9}\cdot(-1/2a^3+1/2a^2+4a-1)^{18}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -134217728 \) = \(-2^{9}\cdot2^{18}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1533755475209}{1024} a^{3} - \frac{3655919604805}{1024} a^{2} - \frac{2329414733635}{256} a + \frac{3964730446695}{256} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/18\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a^{3} - 3 a^{2} - 5 a + 14 : -2 a^{3} + 4 a^{2} + 10 a - 12 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 839.72983296043281064459306155141147920 \)
Tamagawa product: \( 162 \)  =  \(3^{2}\cdot( 2 \cdot 3^{2} )\)
Torsion order: \(18\)
Leading coefficient: \( 3.55256860685279 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/2a^2+1/2a-1)\) \(2\) \(9\) \(I_{9}\) Split multiplicative \(-1\) \(1\) \(9\) \(9\)
\((-1/2a^3+1/2a^2+4a-1)\) \(2\) \(18\) \(I_{18}\) Split multiplicative \(-1\) \(1\) \(18\) \(18\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 6, 9 and 18.
Its isogeny class 4.2-f consists of curves linked by isogenies of degrees dividing 18.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.