Properties

Label 4.4.13888.1-7.3-a2
Base field 4.4.13888.1
Conductor norm \( 7 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.13888.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 7 x^{2} + 6 x + 9 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([9, 6, -7, -2, 1]))
 
gp: K = nfinit(Polrev([9, 6, -7, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9, 6, -7, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{3}a^{3}-\frac{2}{3}a^{2}-\frac{1}{3}a+2\right){x}{y}+a{y}={x}^{3}+\left(\frac{1}{3}a^{3}-\frac{2}{3}a^{2}-\frac{4}{3}a\right){x}^{2}+\left(-\frac{2}{3}a^{3}+\frac{4}{3}a^{2}+\frac{14}{3}a-3\right){x}-2a^{3}+a^{2}+8a-4\)
sage: E = EllipticCurve([K([2,-1/3,-2/3,1/3]),K([0,-4/3,-2/3,1/3]),K([0,1,0,0]),K([-3,14/3,4/3,-2/3]),K([-4,8,1,-2])])
 
gp: E = ellinit([Polrev([2,-1/3,-2/3,1/3]),Polrev([0,-4/3,-2/3,1/3]),Polrev([0,1,0,0]),Polrev([-3,14/3,4/3,-2/3]),Polrev([-4,8,1,-2])], K);
 
magma: E := EllipticCurve([K![2,-1/3,-2/3,1/3],K![0,-4/3,-2/3,1/3],K![0,1,0,0],K![-3,14/3,4/3,-2/3],K![-4,8,1,-2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a+1)\) = \((-a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 7 \) = \(7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a+1)\) = \((-a+1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -7 \) = \(-7\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{138334576381}{21} a^{3} - \frac{401776485356}{21} a^{2} - \frac{604938667369}{21} a + \frac{458963405296}{7} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 223.00040075341895135944616865941698907 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.89228170094403 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+1)\) \(7\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 7.3-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.