Properties

Label 4.4.13676.1-10.1-f2
Base field 4.4.13676.1
Conductor norm \( 10 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.13676.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 6 x^{2} + 7 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 7, -6, -1, 1]))
 
gp: K = nfinit(Polrev([1, 7, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 7, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}+a^{2}-4a-1\right){x}{y}+\left(a^{3}-5a+2\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-159a^{3}+550a^{2}-419a-62\right){x}-6046a^{3}+21059a^{2}-16030a-2459\)
sage: E = EllipticCurve([K([-1,-4,1,1]),K([-1,1,0,0]),K([2,-5,0,1]),K([-62,-419,550,-159]),K([-2459,-16030,21059,-6046])])
 
gp: E = ellinit([Polrev([-1,-4,1,1]),Polrev([-1,1,0,0]),Polrev([2,-5,0,1]),Polrev([-62,-419,550,-159]),Polrev([-2459,-16030,21059,-6046])], K);
 
magma: E := EllipticCurve([K![-1,-4,1,1],K![-1,1,0,0],K![2,-5,0,1],K![-62,-419,550,-159],K![-2459,-16030,21059,-6046]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a+1)\) = \((a^3+a^2-4a)\cdot(a^3-5a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 10 \) = \(2\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^2+2a+1)\) = \((a^3+a^2-4a)^{2}\cdot(a^3-5a+1)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 100 \) = \(2^{2}\cdot5^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2016692964562557336251}{50} a^{3} + \frac{2387015629041994958053}{50} a^{2} - \frac{6887802003231142698469}{50} a - \frac{461775617853395749497}{25} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{2} a^{3} + \frac{9}{2} a^{2} - \frac{21}{2} a + 7 : \frac{103}{4} a^{3} - 85 a^{2} + 48 a + \frac{123}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 259.83139102200303578339911859847985677 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 2.22183637346708 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3+a^2-4a)\) \(2\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((a^3-5a+1)\) \(5\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 10.1-f consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.