Properties

Label 4.4.13025.1-5.1-a4
Base field 4.4.13025.1
Conductor norm \( 5 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.13025.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 12 x^{2} + 3 x + 29 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([29, 3, -12, -1, 1]))
 
gp: K = nfinit(Polrev([29, 3, -12, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![29, 3, -12, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{3}{2}a+\frac{9}{4}\right){x}{y}+\left(a^{2}-5\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-\frac{7}{2}a^{3}+a^{2}+12a-\frac{5}{2}\right){x}+\frac{39}{4}a^{3}+\frac{27}{2}a^{2}-\frac{65}{2}a-\frac{177}{4}\)
sage: E = EllipticCurve([K([9/4,-3/2,-1/2,1/4]),K([-1,-1,0,0]),K([-5,0,1,0]),K([-5/2,12,1,-7/2]),K([-177/4,-65/2,27/2,39/4])])
 
gp: E = ellinit([Polrev([9/4,-3/2,-1/2,1/4]),Polrev([-1,-1,0,0]),Polrev([-5,0,1,0]),Polrev([-5/2,12,1,-7/2]),Polrev([-177/4,-65/2,27/2,39/4])], K);
 
magma: E := EllipticCurve([K![9/4,-3/2,-1/2,1/4],K![-1,-1,0,0],K![-5,0,1,0],K![-5/2,12,1,-7/2],K![-177/4,-65/2,27/2,39/4]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/4a^3+1/2a^2-1/2a-7/4)\) = \((1/4a^3+1/2a^2-1/2a-7/4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 5 \) = \(5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-3/4a^3+3/2a^2+11/2a-19/4)\) = \((1/4a^3+1/2a^2-1/2a-7/4)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 25 \) = \(5^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{5243081}{20} a^{3} - \frac{2114437}{10} a^{2} + \frac{27643383}{10} a + \frac{84189419}{20} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{1}{4} a^{3} + \frac{1}{2} a^{2} + \frac{5}{2} a + \frac{3}{4} : -\frac{3}{4} a^{3} - \frac{1}{2} a^{2} + \frac{11}{2} a + \frac{33}{4} : 1\right)$
Height \(0.27900112998539265966839896484009021171\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{4} a^{3} + \frac{5}{2} a^{2} + \frac{3}{2} a - \frac{33}{4} : \frac{1}{4} a^{3} - \frac{17}{2} a^{2} - \frac{3}{2} a + \frac{121}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.27900112998539265966839896484009021171 \)
Period: \( 1484.2514728195000566936756381707098341 \)
Tamagawa product: \( 2 \)
Torsion order: \(4\)
Leading coefficient: \( 1.81423937825073 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/4a^3+1/2a^2-1/2a-7/4)\) \(5\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 5.1-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.