Properties

Label 4.4.12197.1-37.2-a2
Base field 4.4.12197.1
Conductor norm \( 37 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.12197.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 5 x^{2} + 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 3, -5, -1, 1]))
 
gp: K = nfinit(Polrev([1, 3, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}+a-3\right){x}{y}+\left(a^{3}-a^{2}-5a+3\right){y}={x}^{3}+\left(-a^{3}+6a\right){x}^{2}+\left(a^{3}+5a^{2}-6a-8\right){x}+5a^{3}+6a^{2}-25a-34\)
sage: E = EllipticCurve([K([-3,1,1,0]),K([0,6,0,-1]),K([3,-5,-1,1]),K([-8,-6,5,1]),K([-34,-25,6,5])])
 
gp: E = ellinit([Polrev([-3,1,1,0]),Polrev([0,6,0,-1]),Polrev([3,-5,-1,1]),Polrev([-8,-6,5,1]),Polrev([-34,-25,6,5])], K);
 
magma: E := EllipticCurve([K![-3,1,1,0],K![0,6,0,-1],K![3,-5,-1,1],K![-8,-6,5,1],K![-34,-25,6,5]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-4a-2)\) = \((a^3-4a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 37 \) = \(37\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-1342a^3+301a^2+7815a-2502)\) = \((a^3-4a-2)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -129961739795077 \) = \(-37^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{182667213631522428976}{129961739795077} a^{3} + \frac{50401070034046346530}{129961739795077} a^{2} + \frac{932928939055723203988}{129961739795077} a + \frac{134727608330513111571}{129961739795077} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(415 a^{3} - 514 a^{2} - 1952 a + 1713 : 19876 a^{3} - 24681 a^{2} - 93410 a + 82207 : 1\right)$
Height \(0.62290476149162688104092444824683310210\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{2} + 6 : a^{3} - 5 a - 6 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.62290476149162688104092444824683310210 \)
Period: \( 11.845732779074630385684495231195919938 \)
Tamagawa product: \( 9 \)
Torsion order: \(3\)
Leading coefficient: \( 2.40524638681567 \)
Analytic order of Ш: \( 9 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-4a-2)\) \(37\) \(9\) \(I_{9}\) Split multiplicative \(-1\) \(1\) \(9\) \(9\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3Cs.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 37.2-a consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.