Properties

Label 4.4.11324.1-4.2-a2
Base field 4.4.11324.1
Conductor norm \( 4 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.11324.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 5 x^{2} + 4 x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([2, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}+a^{2}-4a-2\right){x}{y}+\left(a^{3}-3a+1\right){y}={x}^{3}+\left(-a^{2}+4\right){x}^{2}+\left(-371a^{3}+485a^{2}+1727a-2107\right){x}-7793a^{3}+10190a^{2}+36503a-44728\)
sage: E = EllipticCurve([K([-2,-4,1,1]),K([4,0,-1,0]),K([1,-3,0,1]),K([-2107,1727,485,-371]),K([-44728,36503,10190,-7793])])
 
gp: E = ellinit([Polrev([-2,-4,1,1]),Polrev([4,0,-1,0]),Polrev([1,-3,0,1]),Polrev([-2107,1727,485,-371]),Polrev([-44728,36503,10190,-7793])], K);
 
magma: E := EllipticCurve([K![-2,-4,1,1],K![4,0,-1,0],K![1,-3,0,1],K![-2107,1727,485,-371],K![-44728,36503,10190,-7793]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2+a+3)\) = \((-a^2+a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 4 \) = \(4\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((5a^3-4a^2-26a-23)\) = \((-a^2+a+3)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1048576 \) = \(4^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{163373769935391127101}{1024} a^{3} - \frac{205228455081736078125}{1024} a^{2} + \frac{88458628269022521363}{256} a + \frac{72411360787586364791}{512} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.1722910917180357592615628581565967224 \)
Tamagawa product: \( 2 \)
Torsion order: \(1\)
Leading coefficient: \( 0.550814721168683 \)
Analytic order of Ш: \( 25 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^2+a+3)\) \(4\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 4.2-a consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.