Properties

Label 4.4.10889.1-14.1-a2
Base field 4.4.10889.1
Conductor norm \( 14 \)
CM no
Base change no
Q-curve no
Torsion order \( 8 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.10889.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 5 x^{2} + 2 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([1, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-6a\right){x}{y}+\left(a^{3}-a^{2}-4a+2\right){y}={x}^{3}+\left(-a^{3}+a^{2}+4a-2\right){x}^{2}+\left(-5a^{3}+6a^{2}+22a-12\right){x}+6a^{3}-10a^{2}-22a+19\)
sage: E = EllipticCurve([K([0,-6,0,1]),K([-2,4,1,-1]),K([2,-4,-1,1]),K([-12,22,6,-5]),K([19,-22,-10,6])])
 
gp: E = ellinit([Polrev([0,-6,0,1]),Polrev([-2,4,1,-1]),Polrev([2,-4,-1,1]),Polrev([-12,22,6,-5]),Polrev([19,-22,-10,6])], K);
 
magma: E := EllipticCurve([K![0,-6,0,1],K![-2,4,1,-1],K![2,-4,-1,1],K![-12,22,6,-5],K![19,-22,-10,6]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2-2a+1)\) = \((-a^3+a^2+4a)\cdot(-a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 14 \) = \(2\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((7a^3+6a^2-66a+3)\) = \((-a^3+a^2+4a)^{8}\cdot(-a+2)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 614656 \) = \(2^{8}\cdot7^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{10156308195}{614656} a^{3} + \frac{1932332501}{307328} a^{2} + \frac{53871409229}{614656} a + \frac{16864249233}{614656} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-4 a^{3} + 18 a^{2} - 22 a + 6 : -69 a^{3} + 217 a^{2} - 95 a - 16 : 1\right)$
Height \(0.55480061553011371641761631483700325079\)
Torsion structure: \(\Z/2\Z\oplus\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(a^{3} - \frac{5}{4} a^{2} - \frac{7}{2} a + \frac{3}{4} : -\frac{5}{8} a^{3} + \frac{17}{8} a^{2} - \frac{5}{8} a - \frac{27}{8} : 1\right)$ $\left(a^{2} - 2 a - 1 : a^{3} - 8 a + 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.55480061553011371641761631483700325079 \)
Period: \( 720.45198737899303252606251929718486329 \)
Tamagawa product: \( 16 \)  =  \(2^{3}\cdot2\)
Torsion order: \(8\)
Leading coefficient: \( 3.83043395919801 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+4a)\) \(2\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)
\((-a+2)\) \(7\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 14.1-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.