Properties

Label 4.4.10304.1-16.3-d5
Base field 4.4.10304.1
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 8 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.10304.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 7 x^{2} + 8 x + 8 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([8, 8, -7, -2, 1]))
 
gp: K = nfinit(Polrev([8, 8, -7, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8, 8, -7, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{2}a^{3}-\frac{7}{2}a\right){x}{y}+\left(\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-2a+2\right){y}={x}^{3}+\left(-\frac{1}{2}a^{3}+\frac{7}{2}a+1\right){x}^{2}+\left(-\frac{7}{2}a^{3}+\frac{9}{2}a^{2}+20a-12\right){x}-\frac{7}{2}a^{3}+\frac{11}{2}a^{2}+20a-18\)
sage: E = EllipticCurve([K([0,-7/2,0,1/2]),K([1,7/2,0,-1/2]),K([2,-2,-1/2,1/2]),K([-12,20,9/2,-7/2]),K([-18,20,11/2,-7/2])])
 
gp: E = ellinit([Polrev([0,-7/2,0,1/2]),Polrev([1,7/2,0,-1/2]),Polrev([2,-2,-1/2,1/2]),Polrev([-12,20,9/2,-7/2]),Polrev([-18,20,11/2,-7/2])], K);
 
magma: E := EllipticCurve([K![0,-7/2,0,1/2],K![1,7/2,0,-1/2],K![2,-2,-1/2,1/2],K![-12,20,9/2,-7/2],K![-18,20,11/2,-7/2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2+4)\) = \((-1/2a^3+a^2+5/2a-2)^{4}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(2^{4}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^2-8)\) = \((-1/2a^3+a^2+5/2a-2)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 256 \) = \(2^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -12990 a^{3} + 44327 a^{2} - 2612 a - 22636 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{5}{14} a^{2} - \frac{5}{14} a - \frac{18}{7} : \frac{2}{49} a^{3} + \frac{11}{49} a^{2} - \frac{61}{49} a - \frac{116}{49} : 1\right)$
Height \(0.62665398135232240421810214861760466479\)
Torsion structure: \(\Z/2\Z\oplus\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(\frac{1}{4} a^{2} - \frac{1}{2} a - 2 : \frac{1}{4} a^{3} - \frac{1}{8} a^{2} - 2 a - 1 : 1\right)$ $\left(\frac{1}{2} a^{2} - \frac{1}{2} a - 3 : \frac{1}{2} a^{3} - a^{2} - \frac{7}{2} a + 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.62665398135232240421810214861760466479 \)
Period: \( 2326.7325646963398469544844118947518269 \)
Tamagawa product: \( 2 \)
Torsion order: \(8\)
Leading coefficient: \( 1.79548325620151 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-1/2a^3+a^2+5/2a-2)\) \(2\) \(2\) \(I_0^{*}\) Additive \(-1\) \(4\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 16.3-d consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.