Properties

Label 3.3.985.1-56.1-b1
Base field 3.3.985.1
Conductor norm \( 56 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.985.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 6 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -6, -1, 1]))
 
gp: K = nfinit(Polrev([1, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+\left(-a^{2}+3\right){x}^{2}+\left(47a^{2}-40a-290\right){x}+374a^{2}-315a-2298\)
sage: E = EllipticCurve([K([1,1,0]),K([3,0,-1]),K([-3,0,1]),K([-290,-40,47]),K([-2298,-315,374])])
 
gp: E = ellinit([Polrev([1,1,0]),Polrev([3,0,-1]),Polrev([-3,0,1]),Polrev([-290,-40,47]),Polrev([-2298,-315,374])], K);
 
magma: E := EllipticCurve([K![1,1,0],K![3,0,-1],K![-3,0,1],K![-290,-40,47],K![-2298,-315,374]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a+4)\) = \((-a+2)\cdot(2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 56 \) = \(7\cdot8\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((512a^2-1216a-13504)\) = \((-a+2)^{8}\cdot(2)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -1511207993344 \) = \(-7^{8}\cdot8^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{977143394632247}{368947264} a^{2} - \frac{817750978067041}{368947264} a - \frac{1499021110396295}{92236816} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 6.6937897970631293642482181576723777433 \)
Tamagawa product: \( 12 \)  =  \(2\cdot( 2 \cdot 3 )\)
Torsion order: \(1\)
Leading coefficient: \( 2.55938253 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+2)\) \(7\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)
\((2)\) \(8\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 56.1-b consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.