Properties

Label 3.3.985.1-55.2-a4
Base field 3.3.985.1
Conductor norm \( 55 \)
CM no
Base change no
Q-curve no
Torsion order \( 6 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.985.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 6 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -6, -1, 1]))
 
gp: K = nfinit(Polrev([1, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-4\right){x}{y}+\left(a^{2}-a-4\right){y}={x}^{3}+\left(-a^{2}+a+4\right){x}-a^{2}+a+5\)
sage: E = EllipticCurve([K([-4,-1,1]),K([0,0,0]),K([-4,-1,1]),K([4,1,-1]),K([5,1,-1])])
 
gp: E = ellinit([Polrev([-4,-1,1]),Polrev([0,0,0]),Polrev([-4,-1,1]),Polrev([4,1,-1]),Polrev([5,1,-1])], K);
 
magma: E := EllipticCurve([K![-4,-1,1],K![0,0,0],K![-4,-1,1],K![4,1,-1],K![5,1,-1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a+3)\) = \((-a-1)\cdot(a^2-2a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 55 \) = \(5\cdot11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4a^2+12a-9)\) = \((-a-1)^{2}\cdot(a^2-2a-2)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 3025 \) = \(5^{2}\cdot11^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{3616326}{3025} a^{2} - \frac{9298503}{3025} a + \frac{5981869}{3025} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{2}{9} a^{2} + \frac{2}{9} a + \frac{4}{9} : \frac{5}{27} a^{2} - \frac{1}{9} a - 1 : 1\right)$
Height \(2.1412865109972386156366404812162751420\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{2} + a + 6 : -6 a^{2} + 5 a + 36 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.1412865109972386156366404812162751420 \)
Period: \( 179.13148461925611399666666449018914566 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(6\)
Leading coefficient: \( 4.07387160 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a-1)\) \(5\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((a^2-2a-2)\) \(11\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 55.2-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.