Properties

Label 3.3.321.1-21.1-a2
Base field 3.3.321.1
Conductor norm \( 21 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.321.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -4, -1, 1]))
 
gp: K = nfinit(Polrev([1, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-2\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(-a^{2}+2a+4\right){x}^{2}+\left(22a^{2}+a-87\right){x}+161a^{2}-10a-516\)
sage: E = EllipticCurve([K([-2,0,1]),K([4,2,-1]),K([-2,0,1]),K([-87,1,22]),K([-516,-10,161])])
 
gp: E = ellinit([Polrev([-2,0,1]),Polrev([4,2,-1]),Polrev([-2,0,1]),Polrev([-87,1,22]),Polrev([-516,-10,161])], K);
 
magma: E := EllipticCurve([K![-2,0,1],K![4,2,-1],K![-2,0,1],K![-87,1,22],K![-516,-10,161]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-2a-3)\) = \((a+1)\cdot(-a^2+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 21 \) = \(3\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-13008a^2-11651a+94366)\) = \((a+1)^{8}\cdot(-a^2+2)^{12}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 90812685325761 \) = \(3^{8}\cdot7^{12}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{3503012292854062725880}{90812685325761} a^{2} - \frac{9443468677358551072595}{90812685325761} a + \frac{2028182297320680201637}{90812685325761} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{2} + \frac{2}{9} a + \frac{89}{9} : \frac{53}{27} a^{2} + \frac{113}{27} a - 3 : 1\right)$
Height \(3.2907318166330360755361363816455894799\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{13}{4} a^{2} + \frac{5}{4} a + \frac{37}{4} : -\frac{7}{8} a^{2} + \frac{29}{8} a + \frac{37}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 3.2907318166330360755361363816455894799 \)
Period: \( 2.3555611511695046794288798908286441129 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 1.2979429740966238285276778811360078104 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+1)\) \(3\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)
\((-a^2+2)\) \(7\) \(2\) \(I_{12}\) Non-split multiplicative \(1\) \(1\) \(12\) \(12\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 21.1-a consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.