Properties

Label 3.3.1849.1-8.1-d8
Base field 3.3.1849.1
Conductor norm \( 8 \)
CM no
Base change no
Q-curve yes
Torsion order \( 6 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1849.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 14 x - 8 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-8, -14, -1, 1]))
 
gp: K = nfinit(Polrev([-8, -14, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8, -14, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(\frac{1}{2}a^{2}+\frac{1}{2}a-5\right){y}={x}^{3}+\left(-\frac{1}{2}a^{2}+\frac{3}{2}a+6\right){x}^{2}+\left(50824917136a^{2}+178055320237a+90289043107\right){x}+\frac{372704835802970103}{2}a^{2}+\frac{1305699696741374595}{2}a+331049855830269162\)
sage: E = EllipticCurve([K([1,0,0]),K([6,3/2,-1/2]),K([-5,1/2,1/2]),K([90289043107,178055320237,50824917136]),K([331049855830269162,1305699696741374595/2,372704835802970103/2])])
 
gp: E = ellinit([Polrev([1,0,0]),Polrev([6,3/2,-1/2]),Polrev([-5,1/2,1/2]),Polrev([90289043107,178055320237,50824917136]),Polrev([331049855830269162,1305699696741374595/2,372704835802970103/2])], K);
 
magma: E := EllipticCurve([K![1,0,0],K![6,3/2,-1/2],K![-5,1/2,1/2],K![90289043107,178055320237,50824917136],K![331049855830269162,1305699696741374595/2,372704835802970103/2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((3/2a^2-5/2a-19)\cdot(1/2a^2-1/2a-8)\cdot(-a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 8 \) = \(2\cdot2\cdot2\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((6a^2-14a-56)\) = \((3/2a^2-5/2a-19)^{2}\cdot(1/2a^2-1/2a-8)^{8}\cdot(-a-3)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -4096 \) = \(-2^{2}\cdot2^{8}\cdot2^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{13752687939}{512} a^{2} + \frac{22211300447}{512} a + \frac{89438590255}{256} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{78071}{2} a^{2} - \frac{273509}{2} a - 69348 : \frac{52625869}{2} a^{2} + \frac{184364611}{2} a + 46744196 : 1\right)$
Height \(0.51579994761873429138996435400058819900\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(111721 a^{2} + 391392 a + 198467 : -251769382 a^{2} - 882025597 a - 447261258 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.51579994761873429138996435400058819900 \)
Period: \( 162.20024869578208333560907445967795774 \)
Tamagawa product: \( 8 \)  =  \(2\cdot2\cdot2\)
Torsion order: \(6\)
Leading coefficient: \( 1.2970989113337995914436815665669356380 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((3/2a^2-5/2a-19)\) \(2\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((1/2a^2-1/2a-8)\) \(2\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)
\((-a-3)\) \(2\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 8.1-d consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.