Properties

Label 3.3.1849.1-8.1-b2
Base field 3.3.1849.1
Conductor norm \( 8 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1849.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 14 x - 8 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-8, -14, -1, 1]))
 
gp: K = nfinit(Polrev([-8, -14, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8, -14, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(\frac{1}{2}a^{2}+\frac{1}{2}a-5\right){y}={x}^{3}+\left(\frac{1}{2}a^{2}-\frac{1}{2}a-4\right){x}^{2}+\left(-\frac{219683109}{2}a^{2}-\frac{521078557}{2}a-118695812\right){x}-\frac{4044776198393}{2}a^{2}-\frac{15678187411863}{2}a-4056508189528\)
sage: E = EllipticCurve([K([1,0,0]),K([-4,-1/2,1/2]),K([-5,1/2,1/2]),K([-118695812,-521078557/2,-219683109/2]),K([-4056508189528,-15678187411863/2,-4044776198393/2])])
 
gp: E = ellinit([Polrev([1,0,0]),Polrev([-4,-1/2,1/2]),Polrev([-5,1/2,1/2]),Polrev([-118695812,-521078557/2,-219683109/2]),Polrev([-4056508189528,-15678187411863/2,-4044776198393/2])], K);
 
magma: E := EllipticCurve([K![1,0,0],K![-4,-1/2,1/2],K![-5,1/2,1/2],K![-118695812,-521078557/2,-219683109/2],K![-4056508189528,-15678187411863/2,-4044776198393/2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((3/2a^2-5/2a-19)\cdot(1/2a^2-1/2a-8)\cdot(-a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 8 \) = \(2\cdot2\cdot2\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-40a^2+88a+96)\) = \((3/2a^2-5/2a-19)^{4}\cdot(1/2a^2-1/2a-8)^{10}\cdot(-a-3)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 4194304 \) = \(2^{4}\cdot2^{10}\cdot2^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{4890658379189}{2048} a^{2} + \frac{18406527088015}{2048} a + \frac{6182502630031}{1024} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(\frac{1327}{2} a^{2} + \frac{21607}{2} a + 6395 : -332 a^{2} - 5402 a - 3195 : 1\right)$ $\left(-\frac{1715}{8} a^{2} - \frac{46875}{8} a - \frac{14087}{4} : \frac{1711}{16} a^{2} + \frac{46871}{16} a + \frac{14107}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 8.0223136799968813808709016468182252577 \)
Tamagawa product: \( 32 \)  =  \(2\cdot2\cdot2^{3}\)
Torsion order: \(4\)
Leading coefficient: \( 1.4925234753482570010922607715010651642 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((3/2a^2-5/2a-19)\) \(2\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((1/2a^2-1/2a-8)\) \(2\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)
\((-a-3)\) \(2\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 8.1-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.