Properties

Label 3.3.1849.1-4.2-b4
Base field 3.3.1849.1
Conductor norm \( 4 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1849.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 14 x - 8 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-8, -14, -1, 1]))
 
gp: K = nfinit(Polrev([-8, -14, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8, -14, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}+\left(-\frac{1}{2}a^{2}+\frac{3}{2}a+5\right){x}^{2}+\left(-1172779547969a^{2}-4108607544166a-2083410049876\right){x}-\frac{6013628427348503335}{2}a^{2}-\frac{21067590381508211477}{2}a-5341521312975315674\)
sage: E = EllipticCurve([K([1,0,0]),K([5,3/2,-1/2]),K([0,0,0]),K([-2083410049876,-4108607544166,-1172779547969]),K([-5341521312975315674,-21067590381508211477/2,-6013628427348503335/2])])
 
gp: E = ellinit([Polrev([1,0,0]),Polrev([5,3/2,-1/2]),Polrev([0,0,0]),Polrev([-2083410049876,-4108607544166,-1172779547969]),Polrev([-5341521312975315674,-21067590381508211477/2,-6013628427348503335/2])], K);
 
magma: E := EllipticCurve([K![1,0,0],K![5,3/2,-1/2],K![0,0,0],K![-2083410049876,-4108607544166,-1172779547969],K![-5341521312975315674,-21067590381508211477/2,-6013628427348503335/2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-1/2a^2-1/2a)\) = \((1/2a^2-1/2a-8)\cdot(-a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 4 \) = \(2\cdot2\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-5/2a^2+7/2a+30)\) = \((1/2a^2-1/2a-8)^{6}\cdot(-a-3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 128 \) = \(2^{6}\cdot2\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{314669268931}{128} a^{2} + \frac{1010504302689}{128} a + \frac{251280802193}{64} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{13011163}{128} a^{2} - \frac{45582283}{128} a - \frac{5778563}{32} : \frac{79901225}{1024} a^{2} + \frac{279919481}{1024} a + \frac{35485889}{256} : 1\right)$
Height \(1.5346314620001666485447621711456402791\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{203319}{2} a^{2} - \frac{712291}{2} a - \frac{722389}{4} : \frac{203319}{4} a^{2} + \frac{712291}{4} a + \frac{722389}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.5346314620001666485447621711456402791 \)
Period: \( 19.329630085990961612587941159007072496 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 1.0347857608879087113849882983467792446 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/2a^2-1/2a-8)\) \(2\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\((-a-3)\) \(2\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 4.2-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.