Properties

Label 3.3.1849.1-4.1-b1
Base field 3.3.1849.1
Conductor norm \( 4 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1849.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 14 x - 8 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-8, -14, -1, 1]))
 
gp: K = nfinit(Polrev([-8, -14, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8, -14, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(\frac{1}{2}a^{2}+\frac{1}{2}a-5\right){y}={x}^{3}+\left(\frac{1}{2}a^{2}-\frac{1}{2}a-4\right){x}^{2}+\left(-\frac{13872525}{2}a^{2}-\frac{48599719}{2}a-12322069\right){x}-43257956975a^{2}-151545930933a-76846550118\)
sage: E = EllipticCurve([K([1,0,0]),K([-4,-1/2,1/2]),K([-5,1/2,1/2]),K([-12322069,-48599719/2,-13872525/2]),K([-76846550118,-151545930933,-43257956975])])
 
gp: E = ellinit([Polrev([1,0,0]),Polrev([-4,-1/2,1/2]),Polrev([-5,1/2,1/2]),Polrev([-12322069,-48599719/2,-13872525/2]),Polrev([-76846550118,-151545930933,-43257956975])], K);
 
magma: E := EllipticCurve([K![1,0,0],K![-4,-1/2,1/2],K![-5,1/2,1/2],K![-12322069,-48599719/2,-13872525/2],K![-76846550118,-151545930933,-43257956975]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-4a-2)\) = \((3/2a^2-5/2a-19)\cdot(1/2a^2-1/2a-8)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 4 \) = \(2\cdot2\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^2-7a-10)\) = \((3/2a^2-5/2a-19)^{6}\cdot(1/2a^2-1/2a-8)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 128 \) = \(2^{6}\cdot2\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{977256054741}{128} a^{2} + \frac{1606594592603}{128} a + \frac{3198119075811}{32} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{53831}{64} a^{2} + \frac{94311}{32} a + \frac{11965}{8} : -\frac{64052485}{512} a^{2} - \frac{112197685}{256} a - \frac{14223287}{64} : 1\right)$
Height \(1.5346314620001666485447621711456402791\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{495}{2} a^{2} - \frac{1733}{2} a - \frac{1753}{4} : \frac{247}{2} a^{2} + 433 a + \frac{1773}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.5346314620001666485447621711456402791 \)
Period: \( 19.329630085990961612587941159007072496 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 1.0347857608879087113849882983467792446 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((3/2a^2-5/2a-19)\) \(2\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\((1/2a^2-1/2a-8)\) \(2\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 4.1-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.