Properties

Label 3.3.1849.1-4.1-a1
Base field 3.3.1849.1
Conductor norm \( 4 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1849.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 14 x - 8 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-8, -14, -1, 1]))
 
gp: K = nfinit(Polrev([-8, -14, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8, -14, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(\frac{1}{2}a^{2}-\frac{1}{2}a-4\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(13a^{2}+42a+22\right){x}-\frac{163}{2}a^{2}-\frac{577}{2}a-150\)
sage: E = EllipticCurve([K([1,1,0]),K([1,-1,0]),K([-4,-1/2,1/2]),K([22,42,13]),K([-150,-577/2,-163/2])])
 
gp: E = ellinit([Polrev([1,1,0]),Polrev([1,-1,0]),Polrev([-4,-1/2,1/2]),Polrev([22,42,13]),Polrev([-150,-577/2,-163/2])], K);
 
magma: E := EllipticCurve([K![1,1,0],K![1,-1,0],K![-4,-1/2,1/2],K![22,42,13],K![-150,-577/2,-163/2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-4a-2)\) = \((3/2a^2-5/2a-19)\cdot(1/2a^2-1/2a-8)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 4 \) = \(2\cdot2\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-5a^2+2a+56)\) = \((3/2a^2-5/2a-19)^{3}\cdot(1/2a^2-1/2a-8)^{11}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -16384 \) = \(-2^{3}\cdot2^{11}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{439085}{4096} a^{2} + \frac{56367}{4096} a - \frac{2675777}{2048} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 55.249771186073230340633519629338873053 \)
Tamagawa product: \( 3 \)  =  \(3\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 3.8546351990283649074860595090236423060 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((3/2a^2-5/2a-19)\) \(2\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)
\((1/2a^2-1/2a-8)\) \(2\) \(1\) \(I_{11}\) Non-split multiplicative \(1\) \(1\) \(11\) \(11\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 4.1-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.