Properties

Label 3.3.1849.1-1.1-a2
Base field 3.3.1849.1
Conductor norm \( 1 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1849.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 14 x - 8 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-8, -14, -1, 1]))
 
gp: K = nfinit(Polrev([-8, -14, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8, -14, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(\frac{1529}{2}a^{2}-\frac{5257}{2}a-3660\right){x}-\frac{7035}{2}a^{2}+\frac{38357}{2}a-15043\)
sage: E = EllipticCurve([K([1,0,0]),K([-1,-1,0]),K([0,1,0]),K([-3660,-5257/2,1529/2]),K([-15043,38357/2,-7035/2])])
 
gp: E = ellinit([Polrev([1,0,0]),Polrev([-1,-1,0]),Polrev([0,1,0]),Polrev([-3660,-5257/2,1529/2]),Polrev([-15043,38357/2,-7035/2])], K);
 
magma: E := EllipticCurve([K![1,0,0],K![-1,-1,0],K![0,1,0],K![-3660,-5257/2,1529/2],K![-15043,38357/2,-7035/2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1)\) = \((1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 1 \) = 1
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1)\) = \((1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -1 \) = -1
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -57005 a^{2} + 108767 a + 791289 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{1049}{32} a^{2} - \frac{3917}{32} a - \frac{1789}{16} : \frac{88911}{128} a^{2} - \frac{345947}{128} a - \frac{122795}{64} : 1\right)$
Height \(0.97294313207849206986455156571462942670\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{11}{4} a^{2} - \frac{11}{2} a - \frac{117}{4} : -\frac{11}{8} a^{2} + \frac{9}{4} a + \frac{117}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.97294313207849206986455156571462942670 \)
Period: \( 183.09895535535788136690866122701170210 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 3.1071779843675910361723903410918946459 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
No primes of bad reduction.

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 1.1-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.