Properties

Label 3.3.1825.1-8.1-b2
Base field 3.3.1825.1
Conductor norm \( 8 \)
CM no
Base change no
Q-curve yes
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1825.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 8 x + 7 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([7, -8, -1, 1]))
 
gp: K = nfinit(Polrev([7, -8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![7, -8, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}+a-5\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a^{2}+a-5\right){x}^{2}+\left(-40a^{2}-76a+98\right){x}+259a^{2}+497a-622\)
sage: E = EllipticCurve([K([-5,1,1]),K([-5,1,1]),K([1,1,0]),K([98,-76,-40]),K([-622,497,259])])
 
gp: E = ellinit([Polrev([-5,1,1]),Polrev([-5,1,1]),Polrev([1,1,0]),Polrev([98,-76,-40]),Polrev([-622,497,259])], K);
 
magma: E := EllipticCurve([K![-5,1,1],K![-5,1,1],K![1,1,0],K![98,-76,-40],K![-622,497,259]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 8 \) = \(8\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-32)\) = \((2)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -32768 \) = \(-8^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{121945}{32} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{2} + 3 a + 1 : 2 a^{2} + 3 a - 6 : 1\right)$
Height \(1.3247515694991825831566633179094913275\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.3247515694991825831566633179094913275 \)
Period: \( 34.128163477957967967611687718240764297 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 3.1749521287132293518572514463755508588 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(8\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(5\) 5B.4.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5 and 15.
Its isogeny class 8.1-b consists of curves linked by isogenies of degrees dividing 15.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.