Properties

Label 3.3.1825.1-31.1-a1
Base field 3.3.1825.1
Conductor norm \( 31 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1825.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 8 x + 7 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([7, -8, -1, 1]))
 
gp: K = nfinit(Polrev([7, -8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![7, -8, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-5a^{2}-11a+12\right){x}+21a^{2}+40a-51\)
sage: E = EllipticCurve([K([1,0,0]),K([0,-1,0]),K([1,1,0]),K([12,-11,-5]),K([-51,40,21])])
 
gp: E = ellinit([Polrev([1,0,0]),Polrev([0,-1,0]),Polrev([1,1,0]),Polrev([12,-11,-5]),Polrev([-51,40,21])], K);
 
magma: E := EllipticCurve([K![1,0,0],K![0,-1,0],K![1,1,0],K![12,-11,-5],K![-51,40,21]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-10)\) = \((a^2-10)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 31 \) = \(31\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^2+10)\) = \((a^2-10)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -31 \) = \(-31\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{26320131}{31} a^{2} - \frac{50567719}{31} a + \frac{62942284}{31} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{2} + a + 10 : 5 a^{2} - a - 40 : 1\right)$
Height \(0.95957545931919462019258210177861685940\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.95957545931919462019258210177861685940 \)
Period: \( 66.244207734811816906666527636120905722 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 4.4639247331232860192322379908237064510 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-10)\) \(31\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 31.1-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.