Properties

Label 3.3.1016.1-8.3-b1
Base field 3.3.1016.1
Conductor norm \( 8 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1016.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 6 x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -6, -1, 1]))
 
gp: K = nfinit(Polrev([2, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-3\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a^{2}+5\right){x}^{2}+\left(102a^{2}+116a-1169\right){x}-3315a^{2}+110a+26719\)
sage: E = EllipticCurve([K([-3,0,1]),K([5,0,-1]),K([1,1,0]),K([-1169,116,102]),K([26719,110,-3315])])
 
gp: E = ellinit([Polrev([-3,0,1]),Polrev([5,0,-1]),Polrev([1,1,0]),Polrev([-1169,116,102]),Polrev([26719,110,-3315])], K);
 
magma: E := EllipticCurve([K![-3,0,1],K![5,0,-1],K![1,1,0],K![-1169,116,102],K![26719,110,-3315]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2+a-2)\) = \((-a)\cdot(-a+3)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 8 \) = \(2\cdot2^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2304a^2+3072a-6656)\) = \((-a)^{30}\cdot(-a+3)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -274877906944 \) = \(-2^{30}\cdot2^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{2133363366805}{16384} a^{2} + \frac{13557156967317}{32768} a - \frac{3919110612215}{32768} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(8 a^{2} - 11 a - 35 : 38 a^{2} - 36 a - 206 : 1\right)$
Height \(0.025771459138905171505857507715159978128\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.025771459138905171505857507715159978128 \)
Period: \( 37.381408042719105220749657013643713373 \)
Tamagawa product: \( 30 \)  =  \(( 2 \cdot 3 \cdot 5 )\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 2.7201341300579085325520673750481054976 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(2\) \(30\) \(I_{30}\) Split multiplicative \(-1\) \(1\) \(30\) \(30\)
\((-a+3)\) \(2\) \(1\) \(IV^{*}\) Additive \(-1\) \(2\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 8.3-b consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.