Properties

Label 2.2.97.1-9.1-c6
Base field \(\Q(\sqrt{97}) \)
Conductor norm \( 9 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{97}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 24 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-24, -1, 1]))
 
gp: K = nfinit(Polrev([-24, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-24, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}+{x}^{2}+\left(-120608a-533621\right){x}+50544244a+223629414\)
sage: E = EllipticCurve([K([1,0]),K([1,0]),K([0,0]),K([-533621,-120608]),K([223629414,50544244])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([1,0]),Polrev([0,0]),Polrev([-533621,-120608]),Polrev([223629414,50544244])], K);
 
magma: E := EllipticCurve([K![1,0],K![1,0],K![0,0],K![-533621,-120608],K![223629414,50544244]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((3)\) = \((-2a-9)\cdot(2a-11)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(3\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((66a+321)\) = \((-2a-9)\cdot(2a-11)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -19683 \) = \(-3\cdot3^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{129160769332}{6561} a + \frac{190488703745}{2187} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(64 a + \frac{1131}{4} : -32 a - \frac{1131}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 15.673771857477463468456358659321761685 \)
Tamagawa product: \( 2 \)  =  \(1\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 0.79571520743344917549644134383052823151 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a-9)\) \(3\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((2a-11)\) \(3\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 9.1-c consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.