Properties

Label 2.2.73.1-6.4-a1
Base field \(\Q(\sqrt{73}) \)
Conductor norm \( 6 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{73}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 18 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-18, -1, 1]))
 
gp: K = nfinit(Polrev([-18, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-18, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(1438638a-6865197\right){x}-1941364378a+9264194439\)
sage: E = EllipticCurve([K([0,1]),K([-1,-1]),K([1,1]),K([-6865197,1438638]),K([9264194439,-1941364378])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([-1,-1]),Polrev([1,1]),Polrev([-6865197,1438638]),Polrev([9264194439,-1941364378])], K);
 
magma: E := EllipticCurve([K![0,1],K![-1,-1],K![1,1],K![-6865197,1438638],K![9264194439,-1941364378]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((5a+19)\) = \((-a+5)\cdot(4a-19)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 6 \) = \(2\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-697a-2633)\) = \((-a+5)^{5}\cdot(4a-19)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 23328 \) = \(2^{5}\cdot3^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1507745137}{23328} a - \frac{399962561}{1296} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(149 a - 711 : 20614 a - 98373 : 1\right)$
Height \(0.050185898990116164606565643876668835050\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.050185898990116164606565643876668835050 \)
Period: \( 13.893429059956838203265160977074913112 \)
Tamagawa product: \( 10 \)  =  \(5\cdot2\)
Torsion order: \(1\)
Leading coefficient: \( 1.6321486933136299942317802466116973279 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+5)\) \(2\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)
\((4a-19)\) \(3\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 6.4-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.