Properties

Label 2.2.457.1-6.1-a2
Base field \(\Q(\sqrt{457}) \)
Conductor norm \( 6 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{457}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 114 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-114, -1, 1]))
 
gp: K = nfinit(Polrev([-114, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-114, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-10075393175452795a-102655956047261842\right){x}-1792301473526103661546294a-18261363907664053540688320\)
sage: E = EllipticCurve([K([1,0]),K([0,1]),K([1,0]),K([-102655956047261842,-10075393175452795]),K([-18261363907664053540688320,-1792301473526103661546294])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,1]),Polrev([1,0]),Polrev([-102655956047261842,-10075393175452795]),Polrev([-18261363907664053540688320,-1792301473526103661546294])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,1],K![1,0],K![-102655956047261842,-10075393175452795],K![-18261363907664053540688320,-1792301473526103661546294]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-53a-540)\) = \((6987a-78176)\cdot(-196a+2193)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 6 \) = \(2\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-29267a+327462)\) = \((6987a-78176)^{4}\cdot(-196a+2193)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -144 \) = \(-2^{4}\cdot3^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1399157}{144} a + \frac{14336917}{144} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{969434906}{81} a - \frac{3292452634}{27} : -\frac{7160300007059}{729} a - \frac{24318238505290}{243} : 1\right)$
Height \(1.8323957108589342020944433706507945019\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{47473175}{4} a - \frac{483693683}{4} : \frac{47473175}{8} a + \frac{483693679}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.8323957108589342020944433706507945019 \)
Period: \( 18.039948946002181955426086893478814742 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 3.0926193317313108731318833608166397661 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((6987a-78176)\) \(2\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((-196a+2193)\) \(3\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 6.1-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.