Properties

Base field \(\Q(\sqrt{10}) \)
Label 2.2.40.1-90.1-f9
Conductor \((-3 a)\)
Conductor norm \( 90 \)
CM no
base-change no
Q-curve yes
Torsion order \( 6 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\sqrt{10}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 10 \); class number \(2\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-10, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^2 - 10)
gp (2.8): K = nfinit(a^2 - 10);

Weierstrass equation

\( y^2 + x y + y = x^{3} + \left(-185 a - 469\right) x - 1934 a - 7134 \)
magma: E := ChangeRing(EllipticCurve([1, 0, 1, -185*a - 469, -1934*a - 7134]),K);
sage: E = EllipticCurve(K, [1, 0, 1, -185*a - 469, -1934*a - 7134])
gp (2.8): E = ellinit([1, 0, 1, -185*a - 469, -1934*a - 7134],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

Invariants

\(\mathfrak{N} \) = \((-3 a)\) = \( \left(2, a\right) \cdot \left(3, a + 1\right) \cdot \left(3, a + 2\right) \cdot \left(5, a\right) \)
magma: Conductor(E);
sage: E.conductor()
\(N(\mathfrak{N}) \) = \( 90 \) = \( 2 \cdot 3^{2} \cdot 5 \)
magma: Norm(Conductor(E));
sage: E.conductor().norm()
\(\mathfrak{D}\) = \((10702449 a - 56606850)\) = \( \left(2, a\right) \cdot \left(3, a + 1\right)^{24} \cdot \left(3, a + 2\right)^{6} \cdot \left(5, a\right) \)
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
\(N(\mathfrak{D})\) = \( 2058911320946490 \) = \( 2 \cdot 3^{30} \cdot 5 \)
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
\(j\) = \( \frac{15634088809357392517}{2824295364810} a + \frac{4944021583885925864}{282429536481} \)
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()

Regulator: not available

magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

Torsion subgroup

Structure: \(\Z/6\Z\)
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
Generator: $\left(-11 a + 16 : 64 a - 193 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]

Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(2, a\right) \) \(2\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\( \left(3, a + 1\right) \) \(3\) \(24\) \(I_{24}\) Split multiplicative \(-1\) \(1\) \(24\) \(24\)
\( \left(3, a + 2\right) \) \(3\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\( \left(5, a\right) \) \(5\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6, 8, 12 and 24.
Its isogeny class 90.1-f consists of curves linked by isogenies of degrees dividing 24.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is a \(\Q\)-curve.