Properties

Label 2.2.249.1-10.2-b2
Base field \(\Q(\sqrt{249}) \)
Conductor norm \( 10 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{249}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 62 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-62, -1, 1]))
 
gp: K = nfinit(Polrev([-62, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-62, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+{y}={x}^{3}+\left(-19947514a-147409408\right){x}-136332744923a-1007480841593\)
sage: E = EllipticCurve([K([0,1]),K([0,0]),K([1,0]),K([-147409408,-19947514]),K([-1007480841593,-136332744923])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([0,0]),Polrev([1,0]),Polrev([-147409408,-19947514]),Polrev([-1007480841593,-136332744923])], K);
 
magma: E := EllipticCurve([K![0,1],K![0,0],K![1,0],K![-147409408,-19947514],K![-1007480841593,-136332744923]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((41a+303)\) = \((59a-495)\cdot(18a-151)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 10 \) = \(2\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((11589a-97223)\) = \((59a-495)^{18}\cdot(18a-151)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -1310720 \) = \(-2^{18}\cdot5\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{8025743347527}{1310720} a + \frac{29314806044891}{655360} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{64853}{100} a - \frac{479709}{100} : \frac{2471629}{1000} a + \frac{18247737}{1000} : 1\right)$
Height \(2.1178399196231061693564192001293358039\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.1178399196231061693564192001293358039 \)
Period: \( 1.7623511934473991714298498832477193208 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 0.94611930674676353379224658819809067230 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((59a-495)\) \(2\) \(2\) \(I_{18}\) Non-split multiplicative \(1\) \(1\) \(18\) \(18\)
\((18a-151)\) \(5\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3 and 9.
Its isogeny class 10.2-b consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.