# Properties

 Label 2.0.4.1-200.2-a6 Base field $$\Q(\sqrt{-1})$$ Conductor norm $$200$$ CM no Base change yes Q-curve yes Torsion order $$8$$ Rank $$0$$

# Related objects

Show commands: Magma / PariGP / SageMath

## Base field$$\Q(\sqrt{-1})$$

Generator $$i$$, with minimal polynomial $$x^{2} + 1$$; class number $$1$$.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))

gp: K = nfinit(Polrev([1, 0, 1]));

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);

## Weierstrass equation

$${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+1\right){x}+i$$
sage: E = EllipticCurve([K([1,1]),K([0,1]),K([1,1]),K([1,-1]),K([0,1])])

gp: E = ellinit([Polrev([1,1]),Polrev([0,1]),Polrev([1,1]),Polrev([1,-1]),Polrev([0,1])], K);

magma: E := EllipticCurve([K![1,1],K![0,1],K![1,1],K![1,-1],K![0,1]]);

This is a global minimal model.

sage: E.is_global_minimal_model()

## Invariants

 Conductor: $$(10i+10)$$ = $$(i+1)^{3}\cdot(-i-2)\cdot(2i+1)$$ sage: E.conductor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor norm: $$200$$ = $$2^{3}\cdot5\cdot5$$ sage: E.conductor().norm()  gp: idealnorm(ellglobalred(E)[1])  magma: Norm(Conductor(E)); Discriminant: $$(-100)$$ = $$(i+1)^{4}\cdot(-i-2)^{2}\cdot(2i+1)^{2}$$ sage: E.discriminant()  gp: E.disc  magma: Discriminant(E); Discriminant norm: $$10000$$ = $$2^{4}\cdot5^{2}\cdot5^{2}$$ sage: E.discriminant().norm()  gp: norm(E.disc)  magma: Norm(Discriminant(E)); j-invariant: $$\frac{148176}{25}$$ sage: E.j_invariant()  gp: E.j  magma: jInvariant(E); Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) sage: E.has_cm(), E.cm_discriminant()  magma: HasComplexMultiplication(E); Sato-Tate group: $\mathrm{SU}(2)$

## Mordell-Weil group

 Rank: $$0$$ Torsion structure: $$\Z/2\Z\oplus\Z/4\Z$$ sage: T = E.torsion_subgroup(); T.invariants()  gp: T = elltors(E); T[2]  magma: T,piT := TorsionSubgroup(E); Invariants(T); Torsion generators: $\left(-\frac{3}{2} i : \frac{1}{4} i - \frac{5}{4} : 1\right)$ $\left(-i - 1 : 2 i - 1 : 1\right)$ sage: T.gens()  gp: T[3]  magma: [piT(P) : P in Generators(T)];

## BSD invariants

 Analytic rank: $$0$$ sage: E.rank()  magma: Rank(E); Mordell-Weil rank: $$0$$ Regulator: $$1$$ Period: $$5.9937779636820449602807155375738679561$$ Tamagawa product: $$8$$  =  $$2\cdot2\cdot2$$ Torsion order: $$8$$ Leading coefficient: $$0.74922224546025562003508944219673349452$$ Analytic order of Ш: $$1$$ (rounded)

## Local data at primes of bad reduction

sage: E.local_data()

magma: LocalInformation(E);

prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord($$\mathfrak{N}$$) ord($$\mathfrak{D}$$) ord$$(j)_{-}$$
$$(i+1)$$ $$2$$ $$2$$ $$III$$ Additive $$-1$$ $$3$$ $$4$$ $$0$$
$$(-i-2)$$ $$5$$ $$2$$ $$I_{2}$$ Split multiplicative $$-1$$ $$1$$ $$2$$ $$2$$
$$(2i+1)$$ $$5$$ $$2$$ $$I_{2}$$ Split multiplicative $$-1$$ $$1$$ $$2$$ $$2$$

## Galois Representations

The mod $$p$$ Galois Representation has maximal image for all primes $$p < 1000$$ except those listed.

prime Image of Galois Representation
$$2$$ 2Cs

## Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 4 and 8.
Its isogeny class 200.2-a consists of curves linked by isogenies of degrees dividing 16.

## Base change

This elliptic curve is a $$\Q$$-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
$$\Q$$ 40.a2
$$\Q$$ 80.a2