Properties

Label 2.0.31.1-32.2-a1
Base field \(\Q(\sqrt{-31}) \)
Conductor norm \( 32 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-31}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 8 \); class number \(3\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([8, -1, 1]))
 
gp: K = nfinit(Polrev([8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+a{y}={x}^3+\left(-a+1\right){x}^2+\left(-2a+8\right){x}+4\)
sage: E = EllipticCurve([K([0,1]),K([1,-1]),K([0,1]),K([8,-2]),K([4,0])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([1,-1]),Polrev([0,1]),Polrev([8,-2]),Polrev([4,0])], K);
 
magma: E := EllipticCurve([K![0,1],K![1,-1],K![0,1],K![8,-2],K![4,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a)\) = \((2,a)^{4}\cdot(2,a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 32 \) = \(2^{4}\cdot2\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-224a-256)\) = \((2,a)^{14}\cdot(2,a+1)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 524288 \) = \(2^{14}\cdot2^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{514073}{32} a - 48120 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{4} a : -\frac{3}{8} a - 1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 3.6845144366370951848609099777180877933 \)
Tamagawa product: \( 4 \)  =  \(2^{2}\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 1.3235166564284357065964412379544104894 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2,a)\) \(2\) \(4\) \(I_{6}^{*}\) Additive \(-1\) \(4\) \(14\) \(2\)
\((2,a+1)\) \(2\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 32.2-a consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.