Properties

Label 2.0.31.1-1024.5-d2
Base field \(\Q(\sqrt{-31}) \)
Conductor norm \( 1024 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-31}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 8 \); class number \(3\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([8, -1, 1]))
 
gp: K = nfinit(Polrev([8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^3-a{x}^2+\left(-12a-44\right){x}-32a-112\)
sage: E = EllipticCurve([K([0,0]),K([0,-1]),K([0,0]),K([-44,-12]),K([-112,-32])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,-1]),Polrev([0,0]),Polrev([-44,-12]),Polrev([-112,-32])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,-1],K![0,0],K![-44,-12],K![-112,-32]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((64,16a)\) = \((2,a)^{6}\cdot(2,a+1)^{4}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 1024 \) = \(2^{6}\cdot2^{4}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-114688a-131072)\) = \((2,a)^{23}\cdot(2,a+1)^{14}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 137438953472 \) = \(2^{23}\cdot2^{14}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{514073}{32} a - \frac{1025767}{32} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-4 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.3026725717629109440657099096915237347 \)
Tamagawa product: \( 8 \)  =  \(2\cdot2^{2}\)
Torsion order: \(2\)
Leading coefficient: \( 0.93586760277389288511687758396555376546 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2,a)\) \(2\) \(2\) \(I_{13}^{*}\) Additive \(1\) \(6\) \(23\) \(5\)
\((2,a+1)\) \(2\) \(4\) \(I_{6}^{*}\) Additive \(-1\) \(4\) \(14\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 1024.5-d consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.