# Properties

 Conductor 8 Order 2 Real Yes Primitive No Parity Odd Orbit Label 80.g

# Related objects

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(80)
sage: chi = H[71]
pari: [g,chi] = znchar(Mod(71,80))

## Basic properties

 sage: chi.conductor() pari: znconreyconductor(g,chi) Conductor = 8 sage: chi.multiplicative_order() pari: charorder(g,chi) Order = 2 Real = Yes sage: chi.is_primitive() pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization] Primitive = No sage: chi.is_odd() pari: zncharisodd(g,chi) Parity = Odd Orbit label = 80.g Orbit index = 7

## Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Inducingprimitive character

$$\chi_{8}(3,\cdot)$$ = $$\displaystyle\left(\frac{-8}{\bullet}\right)$$

## Values on generators

$$(31,21,17)$$ → $$(-1,-1,1)$$

## Values

 -1 1 3 7 9 11 13 17 19 21 23 27 $$-1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$-1$$ $$-1$$ $$1$$
value at  e.g. 2

## Related number fields

 Field of values $$\Q$$

## Gauss sum

sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
$$\tau_{ a }( \chi_{ 80 }(71,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{80}(71,\cdot)) = \sum_{r\in \Z/80\Z} \chi_{80}(71,r) e\left(\frac{r}{40}\right) = 5.6568542495i$$

## Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
$$J(\chi_{ 80 }(71,·),\chi_{ 80 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{80}(71,\cdot),\chi_{80}(1,\cdot)) = \sum_{r\in \Z/80\Z} \chi_{80}(71,r) \chi_{80}(1,1-r) = 0$$

## Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
$$K(a,b,\chi_{ 80 }(71,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{80}(71,·)) = \sum_{r \in \Z/80\Z} \chi_{80}(71,r) e\left(\frac{1 r + 2 r^{-1}}{80}\right) = -0.0$$